[1]吴义满.一种基于经验小波变换的心电信号室性早搏检测算法[J].中国医学物理学杂志,2018,35(9):1063-1068.[doi:DOI:10.3969/j.issn.1005-202X.2018.09.013]
 WU Yiman.Detecting premature ventricular contractions in ECG signals with empirical wavelet transformbased algorithm[J].Chinese Journal of Medical Physics,2018,35(9):1063-1068.[doi:DOI:10.3969/j.issn.1005-202X.2018.09.013]
点击复制

一种基于经验小波变换的心电信号室性早搏检测算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第9期
页码:
1063-1068
栏目:
医学信号处理与医学仪器
出版日期:
2018-09-27

文章信息/Info

Title:
Detecting premature ventricular contractions in ECG signals with empirical wavelet transformbased algorithm
文章编号:
1005-202X(2018)09-1063-06
作者:
吴义满
江苏医药职业学院医学影像学院,江苏盐城224000
Author(s):
WU Yiman
School of Medical Imaging, Jangsu Vocational College of Medicine, Yancheng 224000, China
关键词:
心电信号神经网络室性早搏经验小波变换特征提取
Keywords:
Keywords: electrocardiogram signal neural network premature ventricular contraction empirical wavelet transform characteristic extraction
分类号:
R331.38;R318
DOI:
DOI:10.3969/j.issn.1005-202X.2018.09.013
文献标志码:
A
摘要:
针对心电信号中的室性早搏心拍检测问题,使用经验小波变换(EWT)实现心电信号的自适应分解。根据心电信号时频能量变化特征,提出了一种低复杂度的频域累积能量特征计算方法,并分析了室性早搏与正常心电信号的特征差异性。最后利用反向传播神经网络在MIT-BIH心电数据库上进行心拍样本训练与识别测试。结果表明基于EWT的特征提取避免了传统时域特征提取中的QRS波群检测过程,降低了其它干扰因素对诊断结果的影响,具有较高的分类精度与良好的鲁棒性,总体敏感度与总体阳性检测率分别达到96.55%和97.73%。
Abstract:
Abstract: In view of the problems in the detection of premature ventricular contractions in electrocardiogram (ECG) signals, empirical wavelet transform is proposed to achieve the adaptive decomposition of ECG signals. According to the time-frequency energy variation characteristics of ECG signals, a low-complexity method is propose to obtain the characteristics of frequencydomain cumulative energy, and the characteristic differences between premature ventricular contractions and normal ECG signals are analyzed. Finally, back-propagation neural network is used to perform training and detection test on MIT-BIH ECG database. The results show that the characteristic extraction based on empirical wavelet transform avoids the detection process of QRS complexes in the traditional time-domain characteristic extraction and reduces the effects of other interference factors on the diagnosis results, with a high classification accuracy and good robustness. The overall sensitivity and positive detection rate of the proposed method reach 96.55% and 97.73%, respectively.

相似文献/References:

[1]杨杰,张胜,余顺,等.一种基于二次样条母小波函数的心电QRS复合波检测算法[J].中国医学物理学杂志,2013,30(02):4036.[doi:10.3969/j.issn.1005-202X.2013.02.018]
[2]余顺,张胜,杨杰,等.静息状态下不同姿势心电的RR间隔研究[J].中国医学物理学杂志,2013,30(04):4285.[doi:10.3969/j.issn.1005-202X.2013.04.016]
[3]刘雄飞,周惠勇.基于提升小波变换和多种策略的QRS波检测算法[J].中国医学物理学杂志,2013,30(06):4557.[doi:10.3969/j.issn.1005-202X.2013.06.021]
[4]陈津津,赵于前,邹润民.基于超限学习机的腹部CT序列图像肝脏自动分割[J].中国医学物理学杂志,2015,32(05):611.[doi:doi:10.3969/j.issn.1005-202X.2015.05.001]
[5]黄碧莹,唐桦明,钟能枝,等.基于多模板匹配的室性心动过速与室上性心动过速自动识别算法[J].中国医学物理学杂志,2016,33(3):280.[doi:DOI:10.3969/j.issn.1005-202X.2016.03.012]
 [J].Chinese Journal of Medical Physics,2016,33(9):280.[doi:DOI:10.3969/j.issn.1005-202X.2016.03.012]
[6]袁野,王夏天,张子辰,等.基于小波变换和改进的瞬态独立成分分析融合算法的心电信号降噪方法[J].中国医学物理学杂志,2016,33(4):415.[doi:10.3969/j.issn.1005-202X.2016.04.019]
 [J].Chinese Journal of Medical Physics,2016,33(9):415.[doi:10.3969/j.issn.1005-202X.2016.04.019]
[7]李朝兰,方滨,李慧杰,等.应用自相关和独立分量分析的胎儿心电信号提取[J].中国医学物理学杂志,2016,33(8):838.[doi:10.3969/j.issn.1005-202X.2016.08.017]
 [J].Chinese Journal of Medical Physics,2016,33(9):838.[doi:10.3969/j.issn.1005-202X.2016.08.017]
[8]吴敏,谢云,邬洋. 便携式心电监测系统的硬件设计与实现[J].中国医学物理学杂志,2018,35(2):210.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.018]
 WU Min,XIE Yun,WU Yang. Hardware design and implementation of portable electrocardiogram monitoring system[J].Chinese Journal of Medical Physics,2018,35(9):210.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.018]
[9]曾俊,吕红艳,李承红,等. 基于Android手机的生理参数移动监测系统[J].中国医学物理学杂志,2018,35(10):1187.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.015]
 ZENG Jun,LÜ,Hongyan,et al. Physiology parameter monitoring system based on Android mobile phone[J].Chinese Journal of Medical Physics,2018,35(9):1187.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.015]
[10]陈真诚,杜莹,邹春林,等. 基于K-Nearest Neighbor和神经网络的糖尿病分类研究[J].中国医学物理学杂志,2018,35(10):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]
 CHEN Zhencheng,DU Ying,ZOU Chunlin,et al. Classification of diabetes based on K-Nearest Neighbor and neural network[J].Chinese Journal of Medical Physics,2018,35(9):1220.[doi:DOI:10.3969/j.issn.1005-202X.2018.010.022]

备注/Memo

备注/Memo:
【收稿日期】2018-06-20
【基金项目】江苏省科技厅自然科学基金项目(BK20151293),该项目为江苏省品牌示范高职院校重点建设项目
【作者简介】吴义满,讲师,硕士研究生,研究方向:生命信号处理,E-mail: wamzqy0661@sina.com
更新日期/Last Update: 2018-09-29