[1]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557-564.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(5):557-564.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
点击复制

 基于卷积神经网络CT/CBCT影像质量自动分析()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第5期
页码:
557-564
栏目:
医学影像物理
出版日期:
2018-05-22

文章信息/Info

Title:
 Automatic analysis of CT/CBCT image quality based on convolutional neural network
文章编号:
1005-202X(2018)05-0557-08
作者:
 张俊1朱金汉1庄永东2刘小伟2陈立新1
 1.华南肿瘤学国家重点实验室/中山大学肿瘤防治中心, 广东 广州 510060; 2.中山大学物理学院, 广东 广州 510275
Author(s):
 ZHANG Jun1 ZHU Jinhan1 ZHUANG Yongdong2 LIU Xiaowei2 CHEN Lixin1
 1. Sun Yat-sen University Cancer Center/State Key Laboratory of Oncology in South China, Guangzhou 510060, China; 2. School of Physics, Sun Yat-sen University, Guangzhou 510275, China
关键词:
 卷积神经网络CT锥形束CT图像质量自动分析
Keywords:
 convolutional neural network computed tomography cone beam computed tomography image quality automatic analysis
分类号:
R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2018.05.012
文献标志码:
A
摘要:
 目的:通过独立的程序自动分析数据,可以在减轻影像的质量保证(QA)工作量的同时,尽可能避免操作者主观因素造成的偏差。 方法:对Catphan500/503/504/600的CT/CBCT影像按照功能模块进行分类,并通过卷积神经网络(CNN)进行学习,学习后对新输入的CT/CBCT影像可以自动识别并根据功能模块进行分类,继而对相关指标包括影像CT值的线性、调制传递函数以及均匀性等进行自动分析,以便确保临床应用的影像质量达到要求。 结果:对于Catphan500扫描的CT图像和Catphan503扫描的CBCT图像,经过CNN自动分类对于功能模块CTP401、CTP404、CTP528都可以正确标记出来,但是CTP486的精确度没有达到100%,即有部分不属于CTP486的模块被错误判断成CTP486。同时均可实现对CT的值线性、调制传递函数以及均匀性3个图像指标进行自动分析。 结论:基于CNN能够准确地对CT/CBCT扫描的Catphan图像进行分类,下一步将拓展该方法到其他影像设备的QA体模,以便实现更广泛的自动影像质量保证。
Abstract:
 Objective To propose an independent program for automatic data analysis which can avoid errors caused by subjective factors of the operator while reducing the quality assurance workload. Methods The computed tomography/cone beam computed tomography (CT/CBCT) images of Catphan500/503/504/600 were classified according to functional modules and studied by convolutional neural networks (CNN). After training, the newly entered CT/CBCT images were automatically identified and sorted by functional modules, and then the related indicators were automatically analyzed, including HU linearity, modulation transfer function and uniformity of those images, aiming to ensure that the image quality met the requirements of clinical application. Results For the CT images of Catphan500 and the CBCT images of Catphan503, the function modules, including CTP401, CTP404 and CTP528, were correctly marked by CNN automatic classification. However, the accuracy of CTP486 didn’t reach 100%, which indicated that some other modules were wrongly classified into CTP486. Meanwhile, the automatic analysis of HU linearity, modulation transfer function and homogeneity of CT was achieved. Conclusion Based on CNN, CT/CBCT images of Catphan can be classified accurately. The next step will be to extend the method to other imaging devices in order to achieve a wider range of automatic image quality assurance.

相似文献/References:

[1]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(5):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[2]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(5):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[3]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(5):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[4]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(5):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[5]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(5):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[6]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(5):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[7]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(5):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[8]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(5):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[9]陈亚正,肖明勇,孙春堂,等. 准直器角度对宫颈癌术后VMAT计划的影响[J].中国医学物理学杂志,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
 [J].Chinese Journal of Medical Physics,2016,33(5):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
[10]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(5):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
[11]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(5):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[12]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(5):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[13]申代友,库洪安,皮红英,等. 基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志,2019,36(2):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
 SHEN Daiyou,KU Hongan,PI Hongying,et al. Depth camera-based fall detection system for the elderly[J].Chinese Journal of Medical Physics,2019,36(5):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
[14]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(5):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[15]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(5):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]

备注/Memo

备注/Memo:
 【收稿日期】2017-12-22
【基金项目】广东省自然科学基金(2014A030310188)
【作者简介】张俊,技师,研究方向:放射治疗计划设计与计量学,E-mail: zhangjun@sysucc.org.cn
【通信作者】陈立新,博士,副研究员,研究方向:医学物理,E-mail: chenlx@sysucc.org.cn
更新日期/Last Update: 2018-05-22