Vol. 34 No.4 April 2017

DOI:10.3969/j.issn.1005-202X.2017.04.012

医学放射物理

用固体水进行加速器吸收剂量的日常QA校准

傅益谋1,陈文俊2,吴剑2,黄良1,金月妹1

1.瑞安市人民医院放疗技术科,浙江瑞安 325200; 2.温州医科大学附属第二医院放化疗科,浙江温州 325000

【摘 要】目的:探讨用固体水(IBA品牌)对加速器吸收剂量的日常质量保证(QA)校准的可行性。方法:通过对标准一维 水箱内水和固体水在相同参数条件下进行吸收剂量对比测量,计算得到各个能量,固体水同水之间的吸收剂量等效系数, 然后用该系数,对水的吸收剂量校正因子(CF_{water})进行重新校正,得到固体水的校正因子(CF_{solid water}),并将该校正因子输入 剂量仪,重新测量相应能量射束的输出剂量。结果:用CF_{solid water}在固体水的吸收剂量测量结果同用CF_{water}在一维水箱水的 测量结果相吻合(误差小于0.5%)。结论:可以用固体水对加速器吸收剂量进行日常QA校准。 【关键词】固体水;加速器;吸收剂量;校正因子 【中图分类号】R811.1 【文献标志码】A 【文章编号】1005-202X(2017)04-0380-04

Dose calibration in daily quality assessment of linear accelerator with solid water

FU Yimou¹, CHEN Wenjun², WU Jian², HUANG Liang¹, JIN Yuemei¹

1. Department of Radiotherapy Technology, Rui'an People's Hospital, Rui'an 325200, China; 2. Department of Radiotherapy and Chemotherapy, Second Affiliate Hospital of Wenzhou Medical College, Wenzhou 325000, China

Abstract: Objective To study the feasibility of IBA solid water in the daily quality assessment (QA) calibration for the absorbed dose of linear accelerator. **Methods** With the same parameters, the absorbed doses of water and solid water in a standard one-dimensional water tank were measured to calculate the energy and the absorbed dose equivalent coefficient between solid water and water. With the equivalent coefficient, the absorbed dose calibration factor of water (CF_{water}) was recalibrated to obtain the calibration factor of solid water ($CF_{solid water}$). The calibration coefficients were put into the dosimeter to recalculate the output dose of the beams with different energy. **Results** In the standard one-dimensional water tank, the absorbed dose in solid water measured with CF_{water} showed good agreement with that in the water measured with CF_{water} (error was less than 0.5%). **Conclusion** IBA solid water is feasibility in the daily QA calibration for the absorbed dose of linear accelerator. **Keywords:** solid water; linear accelerator; absorbed dose; calibration factor

前言

放疗是肿瘤治疗的3大手段之一,超过70%以上的恶性肿瘤需要放射治疗。放射治疗中剂量的准确 性是临床剂量学的关键,直接决定着肿瘤的治疗效 果^[1]。因此,吸收剂量测量的准确性和规范性有着重 要的临床意义。医用直线加速器的绝对剂量校准也 称"标定"或者"刻度",是吸收剂量准确性测量最重 要的工作之一,是放疗科肿瘤放射治疗质量保证和 质量控制(Quality Assurance and Quality Control, QA&QC)的重要环节之一^[23]。根据胡逸民教授^[4]主

【收稿日期】2016-12-12

编的《肿瘤放射物理学》要求,对加速器产生的X射线 与电子束应每日或者至少每周进行两次常规剂量监 测,即在特定条件下,检查cGy/MU关系,允许精度 为±2%。

1 材料与方法

1.1 使用设备

Farmer 2670A剂量仪;Exradin A19 0.6 cc空气等效 塑料指形电离室;IBA固体水,规格为(30×30×1) cm³×30 片,其中测量板厚度为2 cm,电离室放到测量孔后,收 集极到上下表面的距离均为1 cm;Apex:AP-080-A一 维水箱,大小为(30×30×30) cm³;测量加速器为 Varian 23EX,能量档位为6、15 MV X线,6、9、12、15、18 MeV 电子线。

1.2 测量方法

 $- \oplus$

测量方法为对比测量:首先在标准一维水箱中

[【]作者简介】傅益谋,男,工程硕士,高级工程师,研究方向:医学物理, E-mail:12577185@qq.com

根据不同射线及电子束能量大小,按照规定的深度, 用事先计算好的输出剂量校正因子(CFwater)进行加速 器输出剂量校准,调整加速器输出剂量,使得在最大 剂量深度处为1 MU=1 cGy,调整完毕后,至少再测量 记录3次的输出剂量,以观察加速器输出剂量的稳定 性,取平均值,记为Dwater,meano 然后,撤去一维水箱,摆 上IBA固体水,针对不同的射线及电子束能量大小, 用和一维水箱相同的测量深度以及相同的输出剂量 校正因子,测量加速器的输出剂量,同样也至少测量 记录3次以上,取平均值,记着D_{solid water, mean}。即可得到 D_{water, mean}/D_{solid water, mean}为不同射线及电子束能量在不同 深度处,固体水同水之间的吸收剂量等效系数。最 后用该等效系数重新校正CF_{water}得到固体水的吸收 剂量校正因子(CF_{solid water}),将该因子输入剂量仪,重新 测量输出剂量,记录测量结果,并检查分析同一维水 箱的输出剂量结果是否相吻合。各种校正因子见表1。

表1 吸收剂量校正因子 Tab.1 Absorbed dose correction factor

$\mathrm{CF}_{\mathrm{Factor}}$			X-ray				
	6 MeV	9 MeV	12 MeV	15 MeV	18 MeV	6 MV	15MV
CF_1	0.866	0.861	0.857	0.842	0.834	0.943	0.929
CF_2	0.996	1.000	0.981	0.986	0.995	1.094	1.152
CF ₃	1.022	1.021	1.021	1.018	1.019	1.006	1.012
CF_4	0.882	0.879	0.859	0.845	0.846	1.038	1.083

CF₁: Absorbed dose calibration factor in water; CF₂: Enlargement factor from measured point to the maximum dose point, $CF_2=1/PDD_d$ (percentage depth dose at measure depth); CF₃: Equivalence factor between water and solid water, $CF_3=D_{water, mean}/D_{solid water, mean}$; CF₄: Absorbed dose calibration factor in solid water, $CF_4=CF_1 \cdot CF_2 \cdot CF_3$

1.3 吸收剂量校准因子计算

电离室空气吸收剂量校准因子N_b值的计算按照 高能电离辐射吸收剂量校准的IAEA(International Atomic Energy Agency)方法,根据SSDL(国家标准 实验室)出具的现场剂量仪的校验证书所提供的校 准结果,即照射量校准因子N_x。N_x=C/M(C/kg·div⁻¹)。 当使用伦琴(R)作为照射量单位时,1R=2.58×10⁻⁴C/kg, 计算可得空气吸收剂量校准因子^[7]:

N_D=N_x·W/e·K_{att}·K_m·2.58×10⁻⁴ C/kg 而吸收剂量的计算公式为^[4]:

 $D_{W}=M_{U(raw)} \cdot N_{D} \cdot (S_{W}/S_{a})_{u} \cdot P_{u} \cdot P_{cel}$

 $CF_{water} = N_X \cdot W/e \cdot K_{att} \cdot K_m \cdot 2.58 \times 10^{-4} C/kg \cdot (S_w/S_a)_u \cdot P_u \cdot P_{cel}$

则:

 $D_W = M_{U(raw)} \cdot CF_{water}$

其中,C为空气中电离室的照射量,单位库伦(C);M 为剂量仪读数;Dw为吸收剂量;Mu(raw)为经过温度和 气压校正后的电离室剂量仪读数;W/e为平均电离 能,是一常数,为33.97 J/C;Katt为电离室材料对射线 的吸收和散射的校正因子;Km为电离室材料空气不 完全等效的校正因子;(Sw/Sa)u为水与空气阻止本领 比值;Pu为电离室扰动因子;Peet为收集极扰动因子。

2 结 果

表2为实际测量及计算结果,其中等效系数的计 算方法为一维水箱水的3次输出剂量的平均值,除以 固体水(校正因子同液态水)的3次输出剂量的平均 值,即CF3=Dwater, mean/Dsolid water, mean。对比表2中的实际测 量结果可以知道,用等效系数(CF3)校正过后,在固体 水上测量得到的输出剂量(M3)同标准一维水箱中液 态水的输出剂量(M1)吻合非常好,实际测量如表2 所示,最大差值仅仅为0.19%,表明IBA固体水之类 的各种水等效材料可以很好地用于电子直线加速器 的输出剂量刻度校准。表1详细列出了各种校正因 子,以及之间的转换关系。从实际测量可以得到,固 体水同液态水之间的吸收剂量等效系数是不规则变 化的,如图1所示,说明在实际使用中,各种水等效材 料,针对不同射线种类及电子束能量,其等效系数均 需要实际测量,以确保剂量测量的准确性,这同王建 华^[6]的研究结果一致。

3 讨 论

 \oplus

本研究用IBA固体水对各个能量的光子线和电子线吸收剂量进行实际测量,得到IBA固体水对各个能量的光子线和电子线吸收剂量相对于标准水箱水

中国医学物理学杂志

Tab.2 Measured and calculated values												
Energy	Depth/cm	CF1 -	M1/cGy			M2/cGy		M3/cGy			D	
			1 st	2 nd	3 rd	1 st	2 nd	3 rd	1 st	2 nd	3 rd	Deviation/%
6 MeV	1.2	0.866	100.62	100.55	100.58	98.33	98.37	98.42	100.64	100.58	100.63	-0.03
9 MeV	2	0.861	99.89	99.82	99.88	97.77	97.83	97.87	99.99	99.93	100.07	-0.13
12 MeV	3	0.857	99.84	99.86	99.95	97.95	97.87	97.90	100.02	100.10	100.11	-0.19
15 MeV	3	0.842	99.68	99.64	99.66	97.83	97.90	97.70	99.56	99.60	99.71	0.04
18 MeV	3	0.834	99.90	99.97	99.94	98.05	98.10	98.10	100.08	100.01	100.05	-0.11
6 MV	5	0.943	99.87	99.81	99.96	99.31	99.23	99.28	99.95	99.86	99.90	-0.02
15 MV	10	0.929	100.08	99.99	99.97	98.88	98.71	98.77	100.16	100.02	100.06	-0.07

Electron beam: 6, 9, 12, 15, 18 MeV; X-ray: 6, 15 MV; M1: Measure value in water; M2: Measure value in solid water; M3: Calculated value, M3= M1 \cdot CF₃; Deviation=(M1-M3) \cdot M1 \cdot 100%

relative to that in water

的吸收剂量的修正因子,实验测得修正因子介于 1.006~1.022之间。然后使用修正因子CF3对各个能 量的光子线和电子线的吸收剂量在IBA固体水中的 测量结果进行修正,修正后的测量结果同标准水箱 水的测量结果吻合。通过实际测量表明,IBA固体水 之类的水等效材料可以很好地用于医用电子直线加 速器吸收剂量的校准测量。需要特别指出的是,IBA 固体水之类的水等效材料相对于标准水箱水的修正 因子,会随着测量深度及能量大小的变化而略微有 所变化,所以,在实际使用中,针对不同剂量校准深 度、不同能量,修正因子需要进行实际测量。用固体 水之类的水等效材料可以降低测量中人为因素的影 响,且重复性好,易于操作。另外还可以通过改变固 体体模中普通体模插片和电离室体模插片中小体模 插片的叠放次序就可以测得垂直射束轴和水平主轴 上不同位置处的吸收剂量,因此,固体水之类的水等 效材料体模还可以作为模体中任意点剂量验证的工 具,使用起来亦是十分的方便[5-8]。

4 结 论

通过实际测量表明,IBA固体水之类的水等效材 料可以很好地用于医用电子直线加速器吸收剂量的 校准测量,可以降低测量中人为因素的影响,且重复 性好,易于操作,大大地缩短加速器输出剂量的日常 QA所需的时间,同时也可以用于IMRT物理计划的 相对和绝对剂量验证,同样具有良好的可操作性^[8-13]。

水等效材料同液态水之间的吸收剂量转换系数,亦称等效系数^[6],会随着射线类型及能量大小的变化而变化,所以针对不同的射线及不同能量的电子束,其等效系数均需要实际测量,以确保剂量的准确性。

【参考文献】

 $-\oplus$

- [1] SUNDSTROM S C, BLOOD C G, MATHENY S A. The optimal placement of casualty evacuation assets: a linear programming model
 [R]. Sam diego: Naval Health Reasearch Center, 1996.
- [2] 杨瑞峰, 黄辉, 何涛. Siemens primus E 医用直线加速器的剂量校准
 [J]. 医疗卫生装备, 2009, 30(4): 115-117.
 YANG R F, HUANG H, HE T. Dose determination and calibration of Siemens primus E LINAC [J]. Chinese Medical Equipment Journal, 2009, 30(4): 115-117.
- [3] 王进,余宁乐,杨春勇,等. 医用加速器平板型电离室和热释光剂 量计电子线剂量验证比对[J]. 中国职业医学, 2013, 40(4): 352-354.
 WANG J, YU N L, YANG C Y, et al. Dose verification of electron beam of medical accelerator between flat chamber and thermoluminescence dosimeter [J]. China Occupational Medicine, 2013, 40(4): 352-354.
- [4] 胡逸民. 肿瘤放射物理学[M]. 北京: 原子能出版社, 1999.
 HU Y M. Radiation oncology physics [M]. Beijing: Atomic Press, 1999.
- [5] 陈伟思, 李国庆, 林意群. 一种加速器吸收剂量测量体模的可用性

研究[J]. 医疗卫生装备, 2011, 32 (4): 16-18

CHEN W S, LI G Q, LIN Y Q. Availability of solid phantom for accelerator absorbed dose measurement [J]. Chinese Medical Equipment Journal, 2011, 32 (4): 16-18.

- [6] 王建华, 王洵, 任江平, 等. 两种固体模体水等效特性的比较研究[J]. 中华放射肿瘤学杂志, 2011, 20(3): 236-239.
 WANG J H, WANG X, REN J P, et al. Dosimetric characteristics of water equivalent for two solid water phantoms[J]. Chinese Journal of Radiation Oncology, 2011, 20(3): 236-239.
- [7] 魏坤杰,程晓军,张钦富.2011-2012年河南省部分医用电子加速器
 性能检测结果与分析[J].中华放射医学与防护杂志,2013,33(4):
 419-425.

WEI K J, CHENG X J, ZHANG Q F. Performance test and analysis of some medical electron accelerators in Henan Province during 2011-2012[J]. Chinese Journal of Radiological Medicine and Protection, 2013, 33(4): 419-425.

- [8] 蒋社伟, 王艳霞. 气温和气压对医用直线加速器输出剂量刻度的影响[J]. 医疗卫生装备, 2016, 37(8): 109-111.
 JIANG S W, WANG Y X. Influences of temperature and pressure on output dose scale of medical linear accelerator[J]. Chinese Medical Equipment Journal, 2016, 37(8): 109-111
- [9] 郭幸语,韩昌.直线加速器高能光子束吸收剂量的测量[J]. 医疗卫 生装备, 2016, 37(1): 90-91.

GUO X Y, HAN C. Measurement of absorbed dose of high-energy photon beam from linear accelerator [J]. Chinese Medical Equipment Journal, 2016, 37(1): 90-91.

- [10] 朱前升,曾自力.基于JJG589-2008的医用电子直线加速器电子束 剂量刻度方法测定[J]. 医疗卫生装备,2014,35(1):103-105
 ZHU Q S, ZENG Z L. Method for determination of doses calibration of medical electron linear accelerator for electron ray based on JJG589-2008[J]. Chinese Medical Equipment Journal, 2014, 35(1): 103-105
- [11] 傳洪杰. NMSR600 医用直线加速器输出剂量稳定性的测量分析[J].
 中国医学装备, 2014(12): 62-65.
 FU H J. Measurement analysis of the dose output stability of NMSR600 medical linear accelerator[J]. China Medical Equipment, 2014(12): 62-65.
- [12] 张绍刚, 林海磊. 放疗技术的进步与剂量的测算[J]. 医疗装备, 2013, 26(1): 1-6.

ZHANG S G, LIN H L. The improvment in radiotherapy and the dose estimation [J]. Chinese Journal of Medical Device, 2013, 26 (1): 1-6.

[13] 曾锦清.放射治疗质量保证方案的应用研究[D]. 广州:南方医科 大学, 2012.

ZENG J Q. To study the application of quality assurance program for radiotherapy [D]. Guangzhou: Southern Medical University, 2012. (编辑:薛泽玲)

(上接379页)

- [7] European Association for the Study of the Liver, European Organization for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma[J]. J Hepatol, 2012, 56(6): 908-943.
- [8] BRUIX J, SHERMAN M. Management of hepatocellular carcinoma: an update[J]. Hepatology, 2011, 53(3): 1020-1022.
- [9] KUDO M, IZUMI N, KOKUDO N, et al. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version[J]. Dig Dis, 2011, 29(3): 339-364.
- [10] LEE J M, PARK J W, CHOI B I. 2014 KLCSG-NCC Korea practice guidelines for the management of hepatocellular carcinoma: HCC diagnostic algorithm[J]. Dig Dis, 2014, 32(6): 764-777.
- [11] FORNER A, VILANA R, AYUSO C, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma [J]. Hepatology, 2008, 47(1): 97-104.

- [12] KIM Y, LEE Y, KIM C, et al. Added diagnostic value of T₂-weighted MR imaging to gadolinium-enhanced three-dimensional dynamic MR imaging for the detection of small hepatocellular carcinomas[J]. Eur J Radiol, 2008, 67(2): 304-310.
- [13] KIM T K, LEE E, JANG H J. Imaging findings of mimickers of hepatocellular carcinoma[J]. Clin Mol Hepatol, 2015, 21(4): 326-343.
- [14] RHEE H, KIM M J, PARK M S, et al. Differentiation of early hepatocellular carcinoma from benign hepatocellular nodules on gadoxetic acid-enhanced MRI[J]. Br J Radiol, 2012, 85(118): e837e844.
- [15] SHELLOCK F G. Magnetic resonance safety update 2002: implants and devices[J]. J Magn Reson Imaging, 2002, 16(5): 485-496.
- [16] SHELLOCK F, CRUES J. MR safety and the American College of Radiology White Paper[J]. AJR Am J Roentgenol, 2002, 178(6): 1349-1352.

(编辑:谭斯允)