[1]何良志,姜金,刘众成,等.不同强度流体剪切力对MC3T3-E1成骨细胞内Piezo1蛋白表达的影响[J].中国医学物理学杂志,2020,37(12):1579-1582.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.020]
 HE Liangzhi,JIANG Jin,LIU Zhongcheng,et al.Effect of different fluid shear stress intensities on expression of Piezo1 protein in MC3T3-E1 osteoblasts[J].Chinese Journal of Medical Physics,2020,37(12):1579-1582.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.020]
点击复制

不同强度流体剪切力对MC3T3-E1成骨细胞内Piezo1蛋白表达的影响()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第12期
页码:
1579-1582
栏目:
其他(激光医学等)
出版日期:
2020-12-30

文章信息/Info

Title:
Effect of different fluid shear stress intensities on expression of Piezo1 protein in MC3T3-E1 osteoblasts
文章编号:
1005-202X(2020)12-1579-04
作者:
何良志姜金刘众成张成俊路凡滕飞耿彬夏亚一
兰州大学第二医院骨科/甘肃省骨与关节疾病重点实验室, 甘肃 兰州 730000
Author(s):
HE Liangzhi JIANG Jin LIU Zhongcheng ZHANG Chengjun LU Fan TENG Fei GENG Bin XIA Yayi
Department of Orthopaedics, Second Hospital of Lanzhou University Key Laboratory of Bone and Joint Diseases of Gansu Province, Lanzhou 730000, china
关键词:
流体剪切力MC3T3-E1成骨细胞Piezo1蛋白表达
Keywords:
Keywords: fluid shear stress osteoblasts Piezo1 protein expression
分类号:
R318;R329.2
DOI:
DOI:10.3969/j.issn.1005-202X.2020.12.020
文献标志码:
A
摘要:
目的:研究在不同强度的流体剪切力作用下,MC3T3-E1成骨细胞内Piezo1蛋白的表达差异。方法:对载玻片上贴附的MC3T3-E1成骨细胞加载不同强度(0、3、6、9、12、15、18 dyne/cm2)流体剪切力45 min,通过免疫荧光和Western Blot分别观察MC3T3-E1成骨细胞内Pieoz1蛋白的表达。结果:免疫荧光及Western Blot结果显示,随着流体剪切力强度的增加,MC3T3-E1成骨细胞内Piezo1蛋白表达量逐渐递增,6 dyne/cm2时达顶峰,此后逐渐下降,15、18 dyne/cm2时与空白组水平相当,显微镜下可观察到细胞结构破坏,细胞被冲散。结论:流体剪切力可促进MC3T3-E1成骨细胞内Piezo1蛋白表达;加力6 dyne/cm2时,Piezo1表达最高;较大的流体剪切力非但不能促进MC3T3-E1成骨细胞内Pizeo1蛋白的表达,反倒对细胞起破坏作用。
Abstract:
Abstract: Objective To investigate the expression differences of Piezo1 protein in MC3T3-E1 osteoblasts under different fluid shear stress intensities. Methods The MC3T3-E1 osteoblasts attached to the slides were subjected to different fluid shear stress (0, 3, 6, 9, 12, 15, 18 dyne/cm2) for 45 minutes, and then the expression of Pieoz1 protein in MC3T3-E1 osteoblasts was respectively observed by immunofluorescence and Western Blot. Results The results from mmunofluorescence and Western Blot showed that with the increase of shear stress, the Piezo1 protein expression in MC3T3-E1 osteoblasts increased accordingly, but at 6 dyne/cm2, the expression reached its highest and then decreased gradually, and at 15 or 18 dyne/cm2, the expression kept the same with the blank group, in which the cells were found destroyed and dispersed. Conclusion The increase of fluid shear stress can improve the expression of Piezo1 protein, and when the stress is added to 6 dyne/cm2, the expression reaches its highest point, but a stress greater than that cannot promote the expression of Pizeo1 protein in MC3T3-E1 osteoblasts any more, and instead it damages the cells.

相似文献/References:

[1]陈少龙,赵良功,滕元君,等.周期性和持续性流体剪切力对成骨细胞OPG、RANKL蛋白表达的影响[J].中国医学物理学杂志,2015,32(01):120.[doi:10.3969/j.issn.1005-202X.2015.01.027]
[2]滕元君,赵良功,陈少龙,等.ERK5信号通路介导流体剪切力对成骨细胞BMP2;BMP7mRNA的表达影响[J].中国医学物理学杂志,2014,31(01):4691.[doi:10.3969/j.issn.1005-202X.2014.01.021]
[3]孟会强,姜金,郭来威,等. ER-α-ERK5信号通路介导流体剪切力促进MC3T3-E1细胞增殖[J].中国医学物理学杂志,2017,34(3):291.[doi:10.3969/j.issn.1005-202X.2017.03.015]
 [J].Chinese Journal of Medical Physics,2017,34(12):291.[doi:10.3969/j.issn.1005-202X.2017.03.015]
[4]王常德,孜里哈·买赛尔,康鹏德,等.细胞骨架在流体剪切力诱导成骨细胞 COX-2基因和蛋白表达中的作用[J].中国医学物理学杂志,2017,34(7):743.[doi:10.3969/j.issn.1005-202X.2017.07.019]
 [J].Chinese Journal of Medical Physics,2017,34(12):743.[doi:10.3969/j.issn.1005-202X.2017.07.019]
[5]杨全增,张成俊,丁宁,等. 不同加载时间流体剪切力对成骨细胞中基质金属蛋白酶-1和基质金属蛋白酶抑制剂-1表达的影响[J].中国医学物理学杂志,2018,35(1):102.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.018]
 YANG Quanzeng,ZHANG Chengjun,DING Ning,et al. Effects of loading time of fluid shear stress on expression of matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1 in osteoblasts[J].Chinese Journal of Medical Physics,2018,35(12):102.[doi:DOI:10.3969/j.issn.1005-202X.2018.01.018]
[6]丁宁,闫亮,万浪,等. NFATc1-ERK5通路介导流体剪切力促进成骨细胞BMP7表达[J].中国医学物理学杂志,2018,35(3):358.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.020]
 DING Ning,YAN Liang,et al. Increased expression of BMP7 by fluid shear stress mediated through NFATc1-ERK5 pathway[J].Chinese Journal of Medical Physics,2018,35(12):358.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.020]
[7]闫亮,姜金,张小辉,等. 不同加载时间流体剪切力对成骨细胞中piezo1机械敏感型蛋白表达的影响[J].中国医学物理学杂志,2018,35(7):839.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.019]
 YAN Liang,,et al. Effects of loading time of fluid shear stress on expression of piezo1 mechanosensitive protein in osteoblasts[J].Chinese Journal of Medical Physics,2018,35(12):839.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.019]
[8]马成华,张宇,景鹏举,等.流体剪切力对人牙周膜细胞作用的研究进展[J].中国医学物理学杂志,2020,37(7):908.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.021]
 MA Chenghua,ZHANG Yu,JING Pengju,et al.Effects of fluid shear stress on human periodontal ligament cells: a review[J].Chinese Journal of Medical Physics,2020,37(12):908.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.021]
[9]马宏武,马成华,张宇,等.流体剪切力通过Piezo1调控MG-63骨肉瘤细胞的凋亡[J].中国医学物理学杂志,2021,38(8):1013.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.018]
 MA Hongwu,MA Chenghua,et al.Fluid shear stress regulates apoptosis of MG-63 osteosarcoma cells through Piezo1[J].Chinese Journal of Medical Physics,2021,38(12):1013.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.018]
[10]刘众成,何良志,移穷,等.Piezo1离子通道介导的流体剪切应力抑制MLO-Y4骨细胞凋亡[J].中国医学物理学杂志,2022,39(10):1287.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.018]
 LIU Zhongcheng,HE Liangzhi,YI Qiong,et al.Piezo1 ion channel-mediated fluid shear stress inhibits the apoptosis of MLO-Y4 osteocytes[J].Chinese Journal of Medical Physics,2022,39(12):1287.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.018]

备注/Memo

备注/Memo:
【收稿日期】2020-05-20 【基金项目】国家自然科学基金(8187401,81960403,82060405);甘肃省中医药管理局科研项目(GZK-2017-51);甘肃省青年科技基金计划(17JR5RA226);兰州大学第二医院“萃英科技创新”计划(CY2017-ZD02, CY2017-QN11, CY2017-QN12);兰州市科技计划项目(2016-3-121, 2019-ZD-58);“中央高校基本科研业务费专项资金”重点研究基地建设项目(lzujbky-2020-kb17) 【作者简介】何良志,硕士研究生,研究方向:细胞生物力学、关节外科,E-mail: 976620652@qq.com;姜金,博士,研究方向:细胞生物力学、关节与运动医学,E-mail: jiangjin2007@163.com(何良志和姜金为共同第一作者) 【通信作者】夏亚一,博士,主任医师,教授,博士生导师,研究方向:关节外科、生物材料、细胞生物力学,E-mail: xiayayi123@136.com
更新日期/Last Update: 2020-12-30