[1]丁小格,邱小平,杨振,等. HexaMotion系统模拟三维呼吸运动对乳腺癌根治术患者胸壁浅表剂量分布的影响[J].中国医学物理学杂志,2018,35(10):1134-1138.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.004]
 DING Xiaoge,QIU Xiaoping,YANG Zhen,et al. Effects of three-dimensional respiratory motions simulated by HexaMotion system on superficial dose distribution of chest wall in patients receiving radical mastectomy for breast cancer[J].Chinese Journal of Medical Physics,2018,35(10):1134-1138.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.004]
点击复制

 HexaMotion系统模拟三维呼吸运动对乳腺癌根治术患者胸壁浅表剂量分布的影响()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
35卷
期数:
2018年第10期
页码:
1134-1138
栏目:
医学放射物理
出版日期:
2018-10-25

文章信息/Info

Title:
 Effects of three-dimensional respiratory motions simulated by HexaMotion system on superficial dose distribution of chest wall in patients receiving radical mastectomy for breast cancer
文章编号:
1005-202X(2018)10-1134-05
作者:
 丁小格1邱小平1杨振2曹瑛2
 1.南华大学核科学与技术学院, 湖南 衡阳 421001; 2.中南大学湘雅医院放射治疗中心, 湖南 长沙 421000
Author(s):
 DING Xiaoge1 QIU Xiaoping1 YANG Zhen2 CAO Ying2
 1. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; 2. Radiotherapy Centre, Xiangya Hospital, Central South University, Changsha 421000, China
关键词:
 HexaMotion系统MOSFET探测器呼吸运动乳腺癌浅表剂量
Keywords:
 Keywords: HexaMotion system MOSFET detector respiratory motion breast cancer superficial dose
分类号:
R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2018.10.004
文献标志码:
A
摘要:
 目的:用HexaMotion系统模拟乳腺癌根治术患者三维呼吸运动,并结合金属氧化物导体场效应晶体管,研究呼吸运动对乳腺肿瘤放射治疗时胸壁浅表剂量分布的影响。 方法:调研57例乳腺癌患者胸壁在X、Y和Z方向的平均运动幅度,结合RPM系统测量9例乳腺癌患者的平均呼吸振幅,利用呼吸运动产生器合成三维运动曲线,再将呼吸曲线文件输入ScandiDoseHexaMotion软件,驱动Delta4模体模拟病人的呼吸运动。为模拟左(右)乳腺癌患者胸壁内侧、中间、外侧测量位置,在Delta4处于机架角为0°、30°(330°)和60°(300°)下十字铅丝投影下的位置固定MOSFET剂量仪,执行计划,测量模体在静止与运动状态下的剂量,评估呼吸运动对乳腺胸壁浅表剂量分布的影响。 结果:模体在静止和平均运动振幅状态下的相对剂量差异基本在±3%左右,整体在±5%以内,且在0°、30°(330°)和60°(300°)静止与运动状态下测量值的差异无显著意义(P值分别为0.73、0.28和0.52);胸壁运动振幅在一定范围内,混合调强计划对胸壁浅表剂量分布影响不大,但随着振幅增加,当运动振幅增加到cm数量级,胸壁浅表剂量分布明显增加。 结论:呼吸曲线振幅轻微的改变并不会造成胸壁浅表剂量明显的变化,但随着呼吸运动振幅的显著增加,胸壁浅表剂量分布也随之增加。
Abstract:
Abstract: Objective To simulate the three-dimensional respiratory motions of patients receiving radical mastectomy by HexaMotion system, and to combine HexaMotion system with metal oxide semiconductor filed effect transistor for studying the effects of respiratory motions on the superficial dose distribution of the chest wall during the radiotherapy for breast cancer. Methods The average motion amplitude of the chest in 57 patients with breast cancer in X, Y and Z directions were investigated, and RPM system was used to measure the average respiratory amplitude of 9 patients with breast cancer. The respiratory motion generator was used to generate three-dimensional motion curves which were then input into ScandiDoseHexaMotion software to drive the Delta4 phantom to simulate the respiratory motions of patients. The MOSFET dosimeter was fixed at the surface of Delta4 which was at cross-hatch angles of 0°, 30° (330°), and 60° (300°) to measure the doses at the medial, middle and lateral side of chest wall in the patients with left (right) breast cancers. Then plans were implemented, and the doses of phantom at rest and in motion state were measured. The effects of respiratory motions on the superficial dose distribution of the chest wall were evaluated. Results The relative dose differences of phantom at rest and in motion state was basically about ±3%, and all of them were within ±5%. No significant differences were found in the measurements between rest state and motion state with Delta4 at cross-hatch angles of 0°, 30° (330°), and 60 ° (300°) (P=0.73, 0.28 and 0.52). When the respiratory amplitude was in a certain range, hybrid intensity-modulated radiotherapy had little effects on the superficial dose distribution of chest wall. However, when the respiratory amplitude was increased to cm magnitude, the superficial dose distribution of chest wall would be significantly increased with the increase of amplitude. Conclusion The slight changes of respiratory amplitude don’t cause obvious changes in chest wall superficial dose, but with the significant increase of respiratory amplitude, the superficial dose distribution of chest wall also increases.

相似文献/References:

[1]王遥,霍万里,熊壮,等.TACE手术中不同站姿下铅眼镜和铅面罩对医生眼晶状体防护效果的蒙特卡洛模拟比较[J].中国医学物理学杂志,2016,33(6):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
 [J].Chinese Journal of Medical Physics,2016,33(10):553.[doi:DOI:10.3969/j.issn.1005-202X.2016.06.003]
[2]张新,谷晓芳,王培臣,等.轻离子束治疗设备注册检验关键技术问题[J].中国医学物理学杂志,2016,33(6):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
 [J].Chinese Journal of Medical Physics,2016,33(10):559.[doi:10.3969/j.issn.1005-202X.2016.06.004]
[3]江芬芬,王培,康盛伟,等. 热释光剂量片测量肺部肿瘤放疗剂量的方法[J].中国医学物理学杂志,2016,33(6):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
 [J].Chinese Journal of Medical Physics,2016,33(10):564.[doi:10.3969/j.issn.1005-202X.2016.06.005]
[4]刘洪源,彭威,杨锐,等. 锥形束CT离线校正肺癌摆位误差[J].中国医学物理学杂志,2016,33(6):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
 [J].Chinese Journal of Medical Physics,2016,33(10):573.[doi:10.3969/j.issn.1005-202X.2016.06.007]
[5]赵彪,潘香,杨毅,等. 右乳癌保乳术后瘤床同步X线和后程电子线补量调强放疗剂量学比较[J].中国医学物理学杂志,2016,33(6):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
 [J].Chinese Journal of Medical Physics,2016,33(10):576.[doi:10.3969/j.issn.1005-202X.2016.06.008]
[6]邓南,钱建庭,刁现芬,等. 基于宽带检测放疗X-光光声效应仿体实验[J].中国医学物理学杂志,2016,33(9):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
 [J].Chinese Journal of Medical Physics,2016,33(10):865.[doi:DOI:10.3969/j.issn.1005-202X.2016.09.001]
[7]张先稳,李军,张西志,等. 宫颈癌术后5野调强放疗4个变量组合的最佳治疗模式的剂量学[J].中国医学物理学杂志,2016,33(9):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
 [J].Chinese Journal of Medical Physics,2016,33(10):872.[doi:10.3969/j.issn.1005-202X.2016.09.002]
[8]胡健,李承军,徐利明,等. 床面倾斜对剂量验证通过率的影响[J].中国医学物理学杂志,2016,33(9):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
 [J].Chinese Journal of Medical Physics,2016,33(10):881.[doi:10.3969/j.issn.1005-202X.2016.09.003]
[9]陈亚正,肖明勇,孙春堂,等. 准直器角度对宫颈癌术后VMAT计划的影响[J].中国医学物理学杂志,2016,33(9):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
 [J].Chinese Journal of Medical Physics,2016,33(10):885.[doi:10.3969/j.issn.1005-202X.2016.09.004]
[10]李毅,唐丰文,张晓智. 基于四维CT和锥形束CT确定非小细胞肺癌放疗靶区外放边界[J].中国医学物理学杂志,2016,33(9):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]
 [J].Chinese Journal of Medical Physics,2016,33(10):892.[doi:10.3969/j.issn.1005-202X.2016.09.005]

备注/Memo

备注/Memo:
 【收稿日期】2018-04-25
【作者简介】丁小格,硕士,研究方向:医学物理,E-mail: huanboom@163.com
更新日期/Last Update: 2018-10-22