[1]刘涛,李桐桐,余春燕,等.基于机器学习评估曲妥珠单抗耐药相关基因在胃癌中的诊断和预后效能[J].中国医学物理学杂志,2025,42(4):525-533.[doi:10.3969/j.issn.1005-202X.2025.04.015]
 LIU Tao,LI Tongtong,YU Chunyan,et al.Evaluation of diagnostic and prognostic relevance of genes related to trastuzumab resistance ingastric cancer based on machine learning[J].Chinese Journal of Medical Physics,2025,42(4):525-533.[doi:10.3969/j.issn.1005-202X.2025.04.015]
点击复制

基于机器学习评估曲妥珠单抗耐药相关基因在胃癌中的诊断和预后效能()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第4期
页码:
525-533
栏目:
医学生物信息
出版日期:
2025-04-20

文章信息/Info

Title:
Evaluation of diagnostic and prognostic relevance of genes related to trastuzumab resistance ingastric cancer based on machine learning
文章编号:
1005-202X(2025)04-0525-09
作者:
刘涛 1李桐桐 1余春燕 1黄翌楚 1姜雷 2
1.兰州大学第一临床医学院,甘肃 兰州 730000;2.兰州大学第一医院普外科,甘肃 兰州 730000
Author(s):
LIU Tao1 LI Tongtong1 YU Chunyan1 HUANG Yichu1 JIANG Lei2
1. The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; 2. Department of General Surgery, the FirstHospital of Lanzhou University, Lanzhou 730000, China
关键词:
胃癌耐药曲妥珠单抗机器学习生物信息学
Keywords:
gastric cancer drug resistance trastuzumab machine learning bioinformatics
分类号:
R318;R735.2
DOI:
10.3969/j.issn.1005-202X.2025.04.015
文献标志码:
A
摘要:
目的:利用机器学习算法探索曲妥珠单抗耐药与敏感相关基因在胃癌中的诊断和预后效能。方法:从GEO数据库中下载耐药和敏感基因数据,进行功能富集分析。利用TCGA数据以及GEO数据进行交集分析,筛选出与胃癌耐药相关的特征基因。采用LASSO以及SVM-RFE方法进行特征基因的筛选。在测试组和验证组中评估特征基因的表达情况,并通过受试者工作特征曲线分析这些基因的诊断价值。利用在线数据库分析SH3GL2的预后价值,进一步探讨其在胃癌患者生存期中的作用;采用CIBERSORT算法评估SH3GL2与胃癌免疫细胞浸润的关系,分析其对免疫微环境的影响。结果:得到15个耐药相关基因,基于机器学习筛选出12个与胃癌相关的诊断生物标志物,包括MMP7、COCH、VCAN、SH3GL2、SYNM、KLK6、STC2、PPP1R1B、CDH3、WNT11、PMEPA1和BCAT1。SH3GL2在测试组和验证组中均表现为低表达,其高表达与胃癌的较差预后相关(P<0.01)。SH3GL2的表达水平与多种免疫细胞(激活的CD8+ T细胞、激活的DC细胞)相关,与免疫抑制因子(如TGFB1、VTCN1)呈正相关,与免疫刺激因子(如CD70、CD80)呈负相关。结论:12个筛选出的特征基因可能成为胃癌的潜在诊断生物标志物。SH3GL2在胃癌中低表达,其高表达可能通过抑制抗肿瘤免疫以缩短胃癌患者的生存期。
Abstract:
Objective To explore the diagnostic and prognostic relevance of genes associated with trastuzumab resistance andsensitivity in gastric cancer using machine learning algorithms. Methods The data on resistant and sensitive genes weredownloaded from the GEO database and subjected to functional enrichment analysis. Intersection analysis was performedusing TCGA and GEO data to identify feature genes related to gastric cancer drug-resistance. LASSO and SVM-RFEmethods were used for feature gene selection. The expressions of these feature genes were detected in both test and validationgroups, and their diagnostic value was analyzed using receiver operating characteristic curves. The prognostic value ofSH3GL2 was assessed using online databases, and its role in patient survival was further explored. CIBERSORT algorithmwas used to evaluate the relationship between SH3GL2 and immune cell infiltration in gastric cancer, and analyze its effecton immune microenvironment. Results Fifteen resistance-related genes were identified, and 12 diagnostic biomarkers relatedto gastric cancer were selected through machine learning, including MMP7, COCH, VCAN, SH3GL2, SYNM, KLK6, STC2,PPP1R1B, CDH3, WNT11, PMEPA1, and BCAT1. SH3GL2 showed low expression in both test and validation groups, andits high expression was associated with poorer prognosis in gastric cancer (P<0.01). SH3GL2 expression level was related tovarious immune cells (activated CD8+ T cells, activated DC cells) and showed positive correlations with immune suppressivefactors (such as TGFB1, VTCN1) and negative correlations with immune stimulatory factors (such as CD70, CD80). Conclusion The 12 selected feature genes can serve as potential diagnostic biomarkers for gastric cancer. SH3GL2 has a lowexpression in gastric cancer, and its high expression might shorten patient survival by inhibiting anti-tumor immunity.

相似文献/References:

[1]易伟松,刘文强,陆 东,等.高光谱成像结合化学计量学诊断胃癌组织[J].中国医学物理学杂志,2015,32(01):124.[doi:10.3969/j.issn.1005-202X.2015.01.028]
[2]宋威,赵迪,鹿红,等.胃癌术后调强放疗射野角度优化的剂量学[J].中国医学物理学杂志,2015,32(06):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
 [J].Chinese Journal of Medical Physics,2015,32(4):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
[3]易伟松,钱辉跃,江厚敏.光纤和显微拉曼光谱结合化学计量学鉴别胃癌组织[J].中国医学物理学杂志,2016,33(2):134.[doi:10.3969/j.issn.1005-202X.2016.02.006]
[4]卢晓光,刘细友,郑言宏,等.胃癌术后不同IMRT布野方式对剂量分布的影响[J].中国医学物理学杂志,2016,33(7):664.[doi:10.3969/j.issn.1005-202X.2016.07.004]
[5]刘光波,刘志坤,闫慧娟,等.不同照射技术在全胃癌放疗中的剂量学比较与分析[J].中国医学物理学杂志,2016,33(11):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
 [J].Chinese Journal of Medical Physics,2016,33(4):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
[6]蒋大振,刘晖,戴静,等. 胃癌调强放疗中多叶光栅3种状态的剂量学比较[J].中国医学物理学杂志,2019,36(2):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
 JIANG Dazhen,LIU Hui,DAI Jing,et al. Dosimetric comparison among split-field, fixed-jaw and rotating multi-leaf collimator in the radiotherapy of gastric carcinoma[J].Chinese Journal of Medical Physics,2019,36(4):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
[7]胡志纲,刘勇强,任建,等.胃癌术后不同布野方案对调强放疗剂量分布的影响[J].中国医学物理学杂志,2019,36(12):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
 HU Zhigang,LIU Yongqiang,REN Jian,et al.Effects of different field arrangements on the dose distribution of postoperative intensity-modulated radiotherapy for gastric cancer[J].Chinese Journal of Medical Physics,2019,36(4):1400.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.007]
[8]范显文,何二松,林昌荣,等.胃癌患者身体质量指数对腹腔镜术式选择及效果的影响[J].中国医学物理学杂志,2020,37(4):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
 FAN Xianwen,HE Ersong,LIN Changrong,et al.Effects of body mass index on the selection and efficacy of laparoscopic surgery in patients with gastric cancer[J].Chinese Journal of Medical Physics,2020,37(4):498.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.018]
[9]赵呈陆,方志军,高永彬,等.基于改进型V-net卷积神经网络的胃壁分割方法[J].中国医学物理学杂志,2021,38(10):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
 ZHAO Chenglu,FANG Zhijun,GAO Yongbin,et al.Gastric wall segmentation based on improved V-net convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(4):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
[10]张育,赵轶峰,苏卓彬,等.基于卷积神经网络的胃癌癌前病变图像分类方法[J].中国医学物理学杂志,2022,39(2):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]
 ZHANG Yu,ZHAO Yifeng,SU Zhuobin,et al.Image classification of gastric precancerous lesions based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(4):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]

备注/Memo

备注/Memo:
【收稿日期】2024-11-12【基金项目】国家自然科学基金(82060527);兰州大学医学教育创新发展项目优秀青年支持计划(lzuyxcx-2022-175)【作者简介】刘涛,硕士研究生,研究方向:胃肠道肿瘤的临床与基础研究,E-mail: mcomcolt@163.com【通信作者】姜雷,博士,副主任医师,研究方向:胃肠道肿瘤的临床与基础研究,E-mail: jiangyjsggyx@163.com
更新日期/Last Update: 2025-04-30