[1]杨文通,赵继荣,薛旭,等.机器学习模型在颈椎病中的应用进展[J].中国医学物理学杂志,2025,42(2):269-273.[doi:DOI:10.3969/j.issn.1005-202X.2025.02.020]
 YANG Wentong,ZHAO Jirong,XUE Xu,et al.Advances in machine learning models for cervical spondylosis[J].Chinese Journal of Medical Physics,2025,42(2):269-273.[doi:DOI:10.3969/j.issn.1005-202X.2025.02.020]
点击复制

机器学习模型在颈椎病中的应用进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
42
期数:
2025年第2期
页码:
269-273
栏目:
医学人工智能
出版日期:
2025-01-20

文章信息/Info

Title:
Advances in machine learning models for cervical spondylosis
文章编号:
1005-202X(2025)02-0269-05
作者:
杨文通赵继荣薛旭马东赵瑞刘俊豪马伯骞
甘肃中医药大学中医临床学院, 甘肃 兰州 730030
Author(s):
YANG Wentong ZHAO Jirong XUE Xu MA Dong ZHAO Rui LIU Junhao MA Boqian
Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730030, China
关键词:
颈椎病机器学习深度学习综述
Keywords:
Keywords: cervical spondylosis machine learning deep learning review
分类号:
R318;653
DOI:
DOI:10.3969/j.issn.1005-202X.2025.02.020
文献标志码:
A
摘要:
颈椎病的诊断、治疗和预后评估是临床诊疗中的难题。机器学习模型可通过对临床复杂数据的处理,提高颈椎病诊断的精准度和效率,协助临床医生选择更精准的治疗方案,并评估预后。笔者通过综述近年来机器学习模型应用于颈椎病领域的国内外文献,分类总结应用于颈椎病诊断、治疗和预后评估方面的有关模型,介绍了随机森林等经典算法,以及卷积神经网络、深度神经网络、长短期记忆网络等新型算法,旨在为颈椎病诊疗的各阶段提供可参考的机器学习方案。
Abstract:
Abstract: The diagnosis, treatment, and prognosis evaluation of cervical spondylosis are challenging in clinic. Machine learning (ML) models can improve the accuracy and efficiency of cervical spondylosis diagnosis by processing complex clinical data, assist in selecting more precise treatment plans, and evaluate prognosis. Through the domestic and foreign literature review on the application of ML models in cervical spondylosis in recent years, the study classifies and summarizes the relevant models applied in the diagnosis, treatment, and prognosis evaluation of cervical spondylosis, introduces classic algorithms such as random forest, as well as new algorithms such as convolutional neural networks, deep neural networks and long short-term memory networks, aiming to provide reference ML solutions for various stages of cervical spondylosis diagnosis and treatment.

相似文献/References:

[1]王美娇,李莎,岳海振,等. Model Analytics辅助的智能放疗计划建模[J].中国医学物理学杂志,2017,34(9):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
 [J].Chinese Journal of Medical Physics,2017,34(2):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
[2]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(2):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[3]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(2):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
[4]刘渊,程玉玉,贺睿敏,等.基于机器学习的鼻咽癌转移淋巴结鉴别模型[J].中国医学物理学杂志,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
 LIU Yuan,CHENG Yuyu,HE Ruimin,et al.Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(2):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
[5]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(2):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[6]雷炳业,潘嘉瑜,吴逢春,等.基于机器学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
 LEI Bingye,PAN Jiayu,et al.Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J].Chinese Journal of Medical Physics,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
[7]李彩,范炤.基于机器学习的阿尔兹海默症分类预测[J].中国医学物理学杂志,2020,37(3):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
 LI Cai,FAN Zhao.Classification and prediction of Alzheimer’s disease based on machine learning[J].Chinese Journal of Medical Physics,2020,37(2):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
[8]闫凤,牛振洋,费振乐,等.机器学习在肺癌VMAT计划中对危及器官剂量预测的可行性[J].中国医学物理学杂志,2020,37(7):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
 YAN Feng,NIU Zhenyang,FEI Zhenle,et al.Feasibility of machine learning in OAR dosimetric prediction in VMAT plan for lung cancer[J].Chinese Journal of Medical Physics,2020,37(2):934.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.025]
[9]黄仕雄,杨松华,王亮,等.基于预测剂量引导的宫颈癌自动计划研究[J].中国医学物理学杂志,2020,37(9):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
 HUANG Shixiong,YANG Songhua,WANG Liang,et al.Automatic planning of radiotherapy for cervical carcinoma based on dose prediction[J].Chinese Journal of Medical Physics,2020,37(2):1101.[doi:10.3969/j.issn.1005-202X.2020.09.004]
[10]陈思佳,石丽婉,林勤.基于知识的放射治疗技术研究[J].中国医学物理学杂志,2020,37(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]
 CHEN Sijia,SHI Liwan,LIN Qin.Research on knowledge-based radiation therapy[J].Chinese Journal of Medical Physics,2020,37(2):1350.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.002]

备注/Memo

备注/Memo:
【收稿日期】2024-08-18 【基金项目】国家重点研发计划(2021YFC1712802);甘肃省联合科研基金(23JRRA1519);赵继荣甘肃省名中医传承工作室项目 【作者简介】杨文通,博士研究生,研究方向:中医药治疗脊柱疾病,E-mail: 2239578929@qq.com 【通信作者】赵继荣,教授,博士生导师,研究方向:中医药治疗脊柱疾病,E-mail: zhaojirong0709@163.com
更新日期/Last Update: 2025-01-22