[1]张锡壮,梁恒源,殷世民,等.基于物联网和深度学习的血压测量系统[J].中国医学物理学杂志,2024,41(11):1383-1391.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.010]
 ZHANG Xizhuang,LIANG Hengyuan,YIN Shimin,et al.Blood pressure measurement system based on internet of things and deep learning[J].Chinese Journal of Medical Physics,2024,41(11):1383-1391.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.010]
点击复制

基于物联网和深度学习的血压测量系统()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第11期
页码:
1383-1391
栏目:
医学信号处理与医学仪器
出版日期:
2024-11-26

文章信息/Info

Title:
Blood pressure measurement system based on internet of things and deep learning
文章编号:
1005-202X(2024)11-1383-09
作者:
张锡壮1梁恒源2殷世民23陈真诚24梁永波234
1.桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004; 2.桂林电子科技大学生命与环境科学学院, 广西 桂林 541004;3.广西自动检测技术与仪器重点实验室, 广西 桂林 541004; 4.广西慢性病代谢病重塑与智能医学工程重点实验室, 广西 桂林 541004
Author(s):
ZHANG Xizhuang1 LIANG Hengyuan2 YIN Shimin2 3 CHEN Zhencheng2 4 LIANG Yongbo2 3 4
1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China 2. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China 3. Guangxi Key Laboratory of Automatic Testing Technology and Instrumentation, Guilin 541004, China 4. Guangxi Key Laboratory of Metabolic Disease Remodeling and Intelligent Medical Engineering for Chronic Diseases, Guilin 541004, China
关键词:
深度学习嵌入式血压物联网云计算
Keywords:
Keywords: deep learning embedded blood pressure internet of things cloud computing
分类号:
R318.6;TP368.1
DOI:
DOI:10.3969/j.issn.1005-202X.2024.11.010
文献标志码:
A
摘要:
提出一种基于物联网和深度学习的血压测量系统,用于进行连续数据采集及血压预测。为了准确预测血压,提出一种混合神经网络结构,用于处理采集的数据并进行血压预测。该模型由ResNet18、GRU和3个全连接层组成。使用设计的系统采集82例志愿者数据进行训练和测试,舒张压的平均绝对误差和标准差分别为2.16、3.09 mmHg,收缩压的平均绝对误差和标准差分别为3.15、5.14 mmHg,达到AAMI标准和BHS标准。
Abstract:
Abstract: A blood pressure measurement system based on internet of things and deep learning is proposed for continuous data acquisition and blood pressure prediction. The system adopts a hybrid neural network structure for processing the collected data and accurately predicting blood pressure, and the model consists of ResNet18, GRU and 3 fully connected layers. The data of 82 individuals are collected for training and testing. The mean absolute errors and standard deviations are 2.16 mmHg and 3.09 mmHg for diastolic blood pressure, 3.15 mmHg and 5.14 mmHg for systolic blood pressure, according with AAMI standard and BHS standard.

相似文献/References:

[1]雷昆仑,李伟鹏.智能导医系统的流媒体优化设计与实现[J].中国医学物理学杂志,2013,30(03):4164.[doi:10.3969/j.issn.1005-202X.2013.03.018]
[2]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(11):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(11):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(11):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(11):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[8]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[9]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(11):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[10]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(11):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]

备注/Memo

备注/Memo:
【收稿日期】2024-08-19 【基金项目】国家自然科学基金(62101148, 62361013);广西自然科学基金(2021GXNSFBA220051);广西自动检测技术与仪器重点实验室基金(YQ19114) 【作者简介】张锡壮,硕士研究生,研究方向:生物传感与智能仪器,E-mail: zhangxizhuang1021@163.com 【通信作者】梁永波,博士,副研究员,研究生导师,研究方向:生物信号处理与医学智能仪器,E-mail: liangyongbo@guet.edu.cn
更新日期/Last Update: 2024-11-26