[1]张琼,杭益柳,邱建林,等.高效注意力金字塔网络在肺结节检测的应用[J].中国医学物理学杂志,2024,41(11):1361-1369.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.007]
 ZHANG Qiong,HANG Yiliu,et al.Efficient attention feature pyramid network for pulmonary nodule detection[J].Chinese Journal of Medical Physics,2024,41(11):1361-1369.[doi:DOI:10.3969/j.issn.1005-202X.2024.11.007]
点击复制

高效注意力金字塔网络在肺结节检测的应用()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第11期
页码:
1361-1369
栏目:
医学影像物理
出版日期:
2024-11-26

文章信息/Info

Title:
Efficient attention feature pyramid network for pulmonary nodule detection
文章编号:
1005-202X(2024)11-1361-09
作者:
张琼12杭益柳12邱建林123吴芳12
1.南通理工学院计算机与信息工程学院, 江苏 南通 226000; 2.南通市虚拟现实与云计算重点实验室, 江苏 南通 226000; 3.南通大学信息科学技术学院, 江苏 南通 226000
Author(s):
ZHANG Qiong1 2 HANG Yiliu1 2 QIU Jianlin1 2 3 WU Fang1 2
1. School of Computer and Information Engineering, Nantong Institute of Technology, Nantong 226000, China 2. Nantong Key Laboratory of Virtual Reality and Cloud Computing, Nantong 226000, China 3. School of Information Science and Technology, Nantong University, Nantong 226000, China
关键词:
肺结节深度可分离卷积神经网络注意力机制特征金字塔目标检测
Keywords:
Keywords: pulmonary nodule depthwise separable convolutional neural network attention mechanism feature pyramid object detection
分类号:
R318;TP391.4
DOI:
DOI:10.3969/j.issn.1005-202X.2024.11.007
文献标志码:
A
摘要:
针对肺部CT图像结节特征不明确和检测困难的问题,提出一种高效注意力特征金字塔网络。首先,该网络以多尺度特征融合的特征金字塔为主干网络,保留丰富的低层特征和高层特征,同时采用深度可分离卷积神经网络提取特征信息;然后,将注意力机制融入主干网络中,对重要特征信息进行加权处理;最后,将所提算法应用在Lung-PET-CT-Dx和Luna16数据集中。实验结果表明,本文算法的精度、召回率和mAP值均优于现有对比算法,证明本文算法在肺结节检测的优越性。
Abstract:
Abstract: To address the challenge of unclear features and difficulties in pulmonary nodule CT image detection, an efficient attention feature pyramid network is proposed. The network firstly employs a feature pyramid of multi-scale feature fusion as the backbone network for effectively preserving both low- and high-level features, and uses the depthwise separable convolutional neural network to extract feature information. Then, the attention mechanism is integrated into the backbone network for assigning weights to salient feature information. Finally, the proposed algorithm is applied to Lung-PET-CT-Dx dataset and Luna16 dataset, and the experimental results demonstrate that the proposed algorithm has higher precision, recall rate and mAP value than the existing comparative algorithms, substantiating its superiority in pulmonary nodule detection.

相似文献/References:

[1]唐思源,刘燕茹,杨敏,等.基于CT图像的肺结节检测与识别[J].中国医学物理学杂志,2019,36(7):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
 TANG Siyuan,LIU Yanru,YANG Min,et al.Detection and recognition of pulmonary nodules based on CT images[J].Chinese Journal of Medical Physics,2019,36(11):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
[2]张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
 ZHANG Qianwen,CHEN Ming,QIN Yufang,et al.Lung nodule segmentation based on 3D ResUnet network[J].Chinese Journal of Medical Physics,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
[3]曹宇,邢素霞,逄键梁,等.基于改进的VGG-16卷积神经网络的肺结节检测[J].中国医学物理学杂志,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
 CAO Yu,XING Suxia,PANG Jianliang,et al.Detection of pulmonary nodules based on improved VGG-16 convolution neural network[J].Chinese Journal of Medical Physics,2020,37(11):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
[4]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
 WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(11):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[5]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
 LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
[6]王新宇,赵静文,刘翔,等.人工智能在肺结节筛查和肺癌诊断中的应用[J].中国医学物理学杂志,2023,40(9):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
 WANG Xinyu,ZHAO Jingwen,LIU Xiang,et al.Applications of artificial intelligence in lung nodule detection and lung cancer diagnosis[J].Chinese Journal of Medical Physics,2023,40(11):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
[7]温帆,杨萍,张鑫,等.基于特征增强的多分支U-Net肺结节分割[J].中国医学物理学杂志,2023,40(11):1343.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.005]
 WEN Fan,YANG Ping,ZHANG Xin,et al.Pulmonary nodule segmentation using multi-branch U-Net based on feature enhancement[J].Chinese Journal of Medical Physics,2023,40(11):1343.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.005]
[8]刘涌涛,王宝珠,郭志涛.基于改进YOLOv7网络模型的肺结节检测算法[J].中国医学物理学杂志,2023,40(12):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
 LIU Yongtao,WANG Baozhu,GUO Zhitao.Lung nodule detection algorithm using improved YOLOv7 network model[J].Chinese Journal of Medical Physics,2023,40(11):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
[9]牛树国,周福兴,颜克松,等.不同CT阈值下实性成分占比对小肺癌浸润性预测的影响[J].中国医学物理学杂志,2024,41(3):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
 NIU Shuguo,ZHOU Fuxing,YAN Kesong,et al.Predictive value of consolidation/tumor ratio at different CT thresholds for invasiveness in small lung cancer[J].Chinese Journal of Medical Physics,2024,41(11):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
[10]丛玉林,徐小虎,沈春林,等.基于CT特征构建预测肺结节良恶性的机器学习模型[J].中国医学物理学杂志,2024,41(10):1315.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.017]
 CONG Yulin,XU Xiaohu,SHEN Chunlin,et al.Machine learning model predicts benign and malignant pulmonary nodules based on CT features[J].Chinese Journal of Medical Physics,2024,41(11):1315.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.017]

备注/Memo

备注/Memo:
【收稿日期】2024-06-24 【基金项目】江苏省自然科学基金(BK20231337);江苏省高校重大自然科学基金(21KJA510004);南通市科技局基础科学研究项目(JCZ2022108,MSZ2022161);南通理工学院中青年骨干教师项目(ZQNGGJS202237,ZQNGGJS202234);南通理工学院科研项目(2022XK(Z)19) 【作者简介】张琼,博士研究生,讲师,研究方向:深度学习、迁移学习,E-mail: zhangq@ntit.edu.cn 【通信作者】杭益柳,硕士,讲师,研究方向:深度学习、数字图像处理,E-mail: 18862928527@163.com
更新日期/Last Update: 2024-11-26