[1]龚旻炜,石佳琪,吴健.机器学习方法预测人群中抑郁症发病风险的研究进展[J].中国医学物理学杂志,2024,41(6):776-781.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.017]
 GONG Minwei,,et al.Review on machine learning methods in predicting the risk of depression[J].Chinese Journal of Medical Physics,2024,41(6):776-781.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.017]
点击复制

机器学习方法预测人群中抑郁症发病风险的研究进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第6期
页码:
776-781
栏目:
医学人工智能
出版日期:
2024-06-25

文章信息/Info

Title:
Review on machine learning methods in predicting the risk of depression
文章编号:
1005-202X(2024)06-0776-06
作者:
龚旻炜123石佳琪123吴健123
1.浙江大学公共卫生学院, 浙江 杭州 310058; 2.浙江大学经血管植入器械全国重点实验室, 浙江 杭州 310000; 3.浙江大学医学院附属第二医院眼科中心, 浙江 杭州 310000
Author(s):
GONG Minwei1 2 3 SHI Jiaqi1 2 3 WU Jian1 2 3
1. School of Public Health, Zhejiang University, Hangzhou 310058, China 2. State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou 310000, China 3. Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
关键词:
抑郁症机器学习深度学习自然语言处理预测模型综述
Keywords:
Keywords: depression machine learning deep learning natural language processing prediction model review
分类号:
R318;R749.41
DOI:
DOI:10.3969/j.issn.1005-202X.2024.06.017
文献标志码:
A
摘要:
在维普、万方、知网、Embase、PubMed和Web of Science数据库中检索2019~2023年间有关机器学习方法预测抑郁症发病风险的文献,系统性地总结这些算法的特点、研究领域、模型效能和当前应用所面临的问题和挑战。研究共纳入92篇文献,结果显示,机器学习预测抑郁症发病风险的模型效果较好,最佳预测模型的AUC值为0.603 0~0.997 6。未来应当建立多中心、前瞻性的融合多模态的动态预测模型,为抑郁症的临床诊断提供更可靠的依据。
Abstract:
Abstract: The articles on machine learning methods for predicting the risk of depression between 2019 and 2023 are retrieved from 6 databases (VIP, WANFANG, CNKI, Embase, PubMed and Web of Science). The review systematically summarized the algorithm characteristics, research fields, model performance, and current problems and challenges. A total of 92 articles are includes. The analysis results show that the machine learning models for predicting the risk of depression perform well, with the AUC values of the best prediction models ranging from 0.603 0 to 0.997 6. In the future, there should be a construction of multicenter prospective dynamic prediction models that use a multi-modal fusion approach to provide a more reliable basis for the clinical diagnosis of depression.

相似文献/References:

[1]郭家梁,等.基于振幅-周期二维分布的脑电复杂度分析[J].中国医学物理学杂志,2016,33(6):633.[doi:10.3969/j.issn.1005-202X.2016.06.019]
[2]王美娇,李莎,岳海振,等. Model Analytics辅助的智能放疗计划建模[J].中国医学物理学杂志,2017,34(9):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
 [J].Chinese Journal of Medical Physics,2017,34(6):870.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.002]
[3]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(6):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[4]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(6):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[5]余锦娟,林勇. 基于机器学习的骨质疏松性骨折预测研究[J].中国医学物理学杂志,2018,35(11):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
 YU Jinjuan,LIN Yong. Prediction of osteoporotic fractures based on machine learning[J].Chinese Journal of Medical Physics,2018,35(6):1329.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.017]
[6]刘渊,程玉玉,贺睿敏,等.基于机器学习的鼻咽癌转移淋巴结鉴别模型[J].中国医学物理学杂志,2019,36(11):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
 LIU Yuan,CHENG Yuyu,HE Ruimin,et al.Machine learning-based classification model of lymph node metastasis in nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2019,36(6):1350.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.020]
[7]孙凯,姚旭峰,马风玲,等.基于机器学习的血细胞分类研究进展[J].中国医学物理学杂志,2020,37(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
 SUN Kai,YAO Xufeng,et al.Blood cell classification based on machine learning[J].Chinese Journal of Medical Physics,2020,37(6):127.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.023]
[8]雷炳业,潘嘉瑜,吴逢春,等.基于机器学习的神经精神疾病辅助诊断研究进展[J].中国医学物理学杂志,2020,37(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
 LEI Bingye,PAN Jiayu,et al.Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning[J].Chinese Journal of Medical Physics,2020,37(6):257.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.022]
[9]李彩,范炤.基于机器学习的阿尔兹海默症分类预测[J].中国医学物理学杂志,2020,37(3):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
 LI Cai,FAN Zhao.Classification and prediction of Alzheimer’s disease based on machine learning[J].Chinese Journal of Medical Physics,2020,37(6):379.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.023]
[10]付常洋,王瑜,肖洪兵,等.基于多尺度功能脑网络融合特征的抑郁症分类算法[J].中国医学物理学杂志,2020,37(4):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
 FU Changyang,WANG Yu,XIAO Hongbing,et al.Classification of depression using fusion features based on multi-scale functional brain network[J].Chinese Journal of Medical Physics,2020,37(6):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
[11]刁云恒,王慧颖,董娇,等.机器学习在抑郁症辅助诊断中的应用进展[J].中国医学物理学杂志,2022,39(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]
 DIAO Yunheng,WANG Huiying,et al.Advances in the application of machine learning in auxiliary diagnosis of depression[J].Chinese Journal of Medical Physics,2022,39(6):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]

备注/Memo

备注/Memo:
【收稿日期】2024-02-12 【基金项目】国家自然科学基金(62176231,82202984) 【作者简介】龚旻炜,硕士研究生,研究方向:医学人工智能、机器学习,E-mail: gongminwei1026@163.com 【通信作者】吴健,博士,教授,研究方向:医学人工智能,E-mail: wujian2000@zju.edu.cn
更新日期/Last Update: 2024-06-25