相似文献/References:
[1]陈津津,赵于前,邹润民.基于超限学习机的腹部CT序列图像肝脏自动分割[J].中国医学物理学杂志,2015,32(05):611.[doi:doi:10.3969/j.issn.1005-202X.2015.05.001]
[2]何兰,吴倩. 基于3D卷积神经网络的肝脏自动分割方法[J].中国医学物理学杂志,2018,35(6):680.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.012]
HE Lan,WU Qian. Automatic liver segmentation based on three-dimensional convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(6):680.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.012]
[3]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(6):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
[4]莫春梅,周金治,李雪,等.基于改进U-Net的肝脏分割方法[J].中国医学物理学杂志,2021,38(5):571.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.009]
MO Chunmei,ZHOU Jinzhi,et al.Liver segmentation method based on improved U-Net[J].Chinese Journal of Medical Physics,2021,38(6):571.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.009]
[5]周意龙,卫子然,蔡清萍,等.基于卷积神经网络胃癌分割与T分期算法[J].中国医学物理学杂志,2022,39(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
ZHOU Yilong,WEI Ziran,CAI Qingping,et al.Gastric cancer segmentation and T staging algorithm based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(6):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
[6]李启行,廖薇.基于注意力机制的生物医学文本分类模型[J].中国医学物理学杂志,2022,39(4):518.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.023]
LI Qihang,LIAO Wei.Biomedical text classification model based on attention mechanism[J].Chinese Journal of Medical Physics,2022,39(6):518.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.023]
[7]江悦莹,施一萍,翁晓俊,等.融合Vnet和边缘特征的肺结节分割算法[J].中国医学物理学杂志,2022,39(6):705.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.009]
JIANG Yueying,SHI Yiping,WENG Xiaojun,et al.Lung nodule segmentation algorithm integrating Vnet and boundary features[J].Chinese Journal of Medical Physics,2022,39(6):705.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.009]
[8]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(6):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
[9]陈菁菁,李小霞,吕念祖.结合通道权重更新与密集残差金字塔空间注意力的皮肤病变分割方法[J].中国医学物理学杂志,2023,40(1):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
CHEN Jingjing,LI Xiaoxia,L?Nianzu,et al.Skin lesion segmentation method combining channel weight update and dense residual pyramid spatial attention[J].Chinese Journal of Medical Physics,2023,40(6):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
[10]王振华,刘阳星,赵晓雨,等.结合上下文和注意力机制改进的视盘分割模型[J].中国医学物理学杂志,2023,40(1):47.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.008]
WANG Zhenhua,LIU Yangxing,ZHAO Xiaoyu,et al.Optic disc segmentation model improved by contextual information and attention mechanism[J].Chinese Journal of Medical Physics,2023,40(6):47.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.008]
[11]邸敬,马帅,王国栋,等.基于改进Unet与动态阈值可变FCMSPCNN的医学图像分割[J].中国医学物理学杂志,2023,40(3):328.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.011]
DI Jing,MA Shuai,WANG Guodong,et al.Medical image segmentation using improved Unet combined with dynamic threshold changed FCMSPCNN[J].Chinese Journal of Medical Physics,2023,40(6):328.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.011]