[1]吴书裕,王伟,阳露,等.基于自监督生成对抗网络的锥形束CT合成伪CT研究[J].中国医学物理学杂志,2023,40(11):1356-1361.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.007]
 WU Shuyu,WANG Wei,YANG Lu,et al.Synthetic CT generation from CBCT images using self-attention generative adversarial network[J].Chinese Journal of Medical Physics,2023,40(11):1356-1361.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.007]
点击复制

基于自监督生成对抗网络的锥形束CT合成伪CT研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第11期
页码:
1356-1361
栏目:
医学影像物理
出版日期:
2023-11-24

文章信息/Info

Title:
Synthetic CT generation from CBCT images using self-attention generative adversarial network
文章编号:
1005-202X(2023)11-1356-06
作者:
吴书裕1王伟1阳露1余辉1周承2梅颖洁3
1.广州医科大学附属肿瘤医院放疗科, 广东 广州 510095; 2.柳州市人民医院设备科, 广西 柳州 545006; 3.广东省人民医院放射科, 广东 广州 510080
Author(s):
WU Shuyu1 WANG Wei1 YANG Lu1 YU Hui1 ZHOU Cheng2 MEI Yingjie3
1. Department of Radiotherapy, Cancer Center of Guangzhou Medical University, Guangzhou 510095, China 2. Department of Equipment, Liuzhou Peoples Hospital, Liuzhou 545006, China 3. Department of Radiology, Guangdong Provincial Peoples Hospital, Guangzhou 510080, China
关键词:
锥形束CT合成CT自监督机制生成对抗网络图像引导放疗
Keywords:
Keywords: cone-beam CT synthetic CT self-attention mechanism generative adversarial network image-guided radiotherapy
分类号:
R318;R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2023.11.007
文献标志码:
A
摘要:
目的:旨在研究自监督生成对抗网络(SAGAN)在锥形束CT(CBCT)合成伪CT(sCT)中的应用,以解决CBCT图像质量问题,提高图像引导放疗的准确性。方法:收集58例头颈鳞癌患者CBCT和计划CT(pCT),采用U-Net结构和马尔科夫鉴别器构建SAGAN网络,并引入自注意力机制。使用WGAN-GP损失函数进行对抗训练,学习CBCT模态的空间映射和密度映射特性,增强CBCT图像特征表达和sCT的合成精度。分别对SAGAN和Res-Unet基线模型合成的sCT图像与原始pCT进行定性和定量分析,验证模型性能。结果:定性结果显示,SAGAN和Res-Unet合成的sCT均有效抑制伪影,SAGAN合成的sCT更接近pCT,误差较小。定量评价结果表明,SAGAN的平均绝对误差、结构相似性指数和峰值信噪比优于Res-Unet基线模型,特别在软组织方面表现更佳,差异有统计学意义(P<0.05)。SAGAN合成的sCT在体部、骨组织、软组织的线性回归斜率分别为0.956、0.959、0.839,CT值校正能力优于对比方法。结论:SAGAN模型在基于CBCT的sCT合成研究具有更优的CT值校正能力和图像转换质量,为图像引导放疗提供可靠依据,提高放疗精确性。
Abstract:
Abstract: Objective To generate synthetic CT (sCT) from cone-beam computed tomography (CBCT) images using the self-attention generative adversarial network (SAGAN) for improving CBCT image quality and enhancing the accuracy of image-guided radiotherapy. Methods The CBCT and planning CT (pCT) were collected from 58 cases of head and neck squamous cell carcinoma. SAGAN was constructed using U-Net architecture and a Markovian discriminator, incorporating a self-attention mechanism. WGAN-GP loss function was utilized for adversarial training to learn the spatial and density mapping characteristics of CBCT modality, which enhances feature expression in CBCT images and improves sCT generation accuracy. Qualitative and quantitative analyses were conducted to compare the sCT generated using SAGAN or Res-Unet (sCTSAGAN or sCTRes-Unet) with the original pCT for verifying model performance. Results The qualitative evaluation showed that both SAGAN and Res-Unet effectively suppressed artifacts, while sCTSAGAN closely resembled pCT, with smaller errors. The quantitative analysis demonstrated that SAGAN outperformed Res-Unet in mean absolute error, structural similarity index and peak signal-to-noise ratio, particularly in soft tissue areas ([P]<0.05). sCTSAGAN had linear regression slopes of 0.956, 0.959 and 0.839 for body, bone tissue and soft tissues, respectively, indicating superior CT number calibration capability as compared with the other methods. Conclusion SAGAN demonstrated superior CT number calibration capability and image generation quality in CBCT-based synthetic CT generation, providing a reliable basis for image-guided radiotherapy and improving treatment accuracy.

相似文献/References:

[1]张俊俊,杨 振,柏朋刚,等.运动模体中靶区长度与锥形束CT扫描速度的相关性[J].中国医学物理学杂志,2015,32(02):259.[doi:10.3969/j.issn.1005-202X.2015.02.025]
[2]张一戈,邱小平,陈维军,等.基于图像引导技术对头颈部肿瘤临床摆位误差的剂量学影响[J].中国医学物理学杂志,2015,32(01):25.[doi:10.3969/j.issn.1005-202X.2015.01.007]
[3]李 毅,李文荣,苏 进,等.基于CBCT非小细胞肺癌外放边界研究[J].中国医学物理学杂志,2014,31(04):5006.[doi:10.3969/j.issn.1005-202X.2014.04.008]
[4]翁邓胡,王 建,尹中明,等.基于锥形束CT研究肺癌图像引导放疗的内靶区外放边界值[J].中国医学物理学杂志,2014,31(04):5012.[doi:10.3969/j.issn.1005-202X.2014.04.009]
[5]查元梓,吴晔明,陆冬青,等.应用锥形束CT研究儿童神经母细胞瘤放射治疗的摆位误差[J].中国医学物理学杂志,2014,31(05):5128.[doi:10.3969/j.issn.1005-202X.2014.05.007]
[6]沈奕晨,聂生东.锥形束CT与螺旋CT图像配准算法及其在放疗中的应用[J].中国医学物理学杂志,2014,31(05):5151.[doi:10.3969/j.issn.1005-202X.2014.05.013]
[7]林俊华,魏贤顶,孔旭东,等.kV级锥形束CT在图像引导放疗中的应用[J].中国医学物理学杂志,2014,31(05):5157.[doi:10.3969/j.issn.1005-202X.2014.05.014]
[8]周 琼,周剑良,张一戈,等.基于锥形束CT肺癌放射治疗两种体位固定技术摆位误差的研究[J].中国医学物理学杂志,2014,31(06):5258.[doi:10.3969/j.issn.1005-202X.2014.06.008]
[9]周永强,金献测,易金玲,等.锥形束CT的验收与QA探讨[J].中国医学物理学杂志,2013,30(01):3854.[doi:10.3969/j.issn.1005-202X.2013.01.005]
[10]刘浩,白靖平,李公平,等.锥形束CT图象引导放疗的应用性测试[J].中国医学物理学杂志,2013,30(01):3877.[doi:10.3969/j.issn.1005-202X.2013.01.010]
[11]吴新红,王江涛,唐巍,等.基于DenseCUT网络由头部锥形束CT图像生成合成CT图像[J].中国医学物理学杂志,2023,40(3):313.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.009]
 WU Xinhong,WANG Jiangtao,TANG Wei,et al.Generation of synthetic CT image from head cone beam CT image using DenseCUT[J].Chinese Journal of Medical Physics,2023,40(11):313.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.009]

备注/Memo

备注/Memo:
【收稿日期】2023-06-12 【基金项目】广东省自然科学基金(2020A1515110577) 【作者简介】吴书裕,博士,研究方向:医学图像处理与肿瘤放射物理,E-mail: wsyeasy@outlook.com 【通信作者】梅颖洁,博士,研究方向:医学成像技术与图像处理,E-mail: yingjie.mei@gmail.com
更新日期/Last Update: 2023-11-24