[1]张子宇,赵可辉,牛慧芳,等.基于轻量级RG-DenseNet的COVID-19 CT图像分类[J].中国医学物理学杂志,2023,40(12):1494-1501.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.007]
 ZHANG Ziyu,ZHAO Kehui,NIU Huifang,et al.COVID-19 classification on CT image using lightweight RG DenseNet[J].Chinese Journal of Medical Physics,2023,40(12):1494-1501.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.007]
点击复制

基于轻量级RG-DenseNet的COVID-19 CT图像分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第12期
页码:
1494-1501
栏目:
医学影像物理
出版日期:
2023-12-27

文章信息/Info

Title:
COVID-19 classification on CT image using lightweight RG DenseNet
文章编号:
1005-202X(2023)12-1494-08
作者:
张子宇1赵可辉2牛慧芳3张志强1周连田4
1.山东中医药大学智能与信息工程学院, 山东 济南 250000; 2.山东中医药大学第二附属医院特检科, 山东 济南 250000; 3.山东省药品不良反应检测中心, 山东 济南 250000; 4.菏泽市中医医院碎石科, 山东 菏泽 247000
Author(s):
ZHANG Ziyu1 ZHAO Kehui2 NIU Huifang3 ZHANG Zhiqiang1 ZHOU Liantian4
1. College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250000, China 2. Special Inspection Department, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, China 3. Shandong Province Adverse Drug Reaction Testing Center, Jinan 250000, China 4. Department of Lithotripsy, Heze Traditional Chinese Medicine Hospital, Heze 247000, China
关键词:
RepGhostDenseNetCOVID-19深度学习图像分类
Keywords:
Keywords: RepGhost DenseNet COVID-19 deep learning image classification
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2023.12.007
文献标志码:
A
摘要:
【摘要】目的:基于轻量级RG-DenseNet构建COVID-19 CT 图像分类模型。方法:以DenseNet121为基础,添加通道和空间注意力机制模块减少无关特征的干扰,将DenseNet中的Bottleneck模块替换为前激活的RG-beneck2模块减少模型参数的同时保持精度尽可能不变。构建RG-DenseNet模型,在COVIDx CT-2A数据集上进行3分类实验。结果:RG-DenseNet准确率为98.93%、精确率为98.70%、召回率为98.97%、特异性为99.48%、F1分数为98.83%。结论:RG-DenseNet与原模型DenseNet121相比在保持准确度仅降低0.01%的情况下,减少92.7%的参数量和计算量,轻量化效果显著,具有实际应用价值。
Abstract:
Abstract: Objective To construct a COVID-19 CT image classification model based on lightweight RG DenseNet. Methods A RG-DenseNet model was constructed by adding channel and spatial attention modules to DenseNet121 for minimizing the interference of irrelevant features, and replacing Bottleneck module in DenseNet with pre-activated RG beneck2 module for reducing model parameters while maintaining accuracy as much as possible. The model performance was verified with 3-category classification experiments on the COVIDx CT-2A dataset. Results RG-DenseNet had an accuracy, precision, recall rate, specificity, and F1-score of 98.93%, 98.70%, 98.97%, 99.48%, and 98.83%, respectively. Conclusion Compared with the original model DenseNet121, RG-DenseNet reduces the number of parameters and the computational complexity by 92.7%, while maintaining an accuracy reduction of only 0.01%, demonstrating a significant lightweight effect and high practical application value.

备注/Memo

备注/Memo:
【收稿日期】2023-08-05 【基金项目】中国药品监管科学研究行动计划第二批重点项目(2022SDADRKY06) 【作者简介】张子宇,硕士,研究方向:计算机视觉、图像处理与分析,E-mail: 1454681376@qq.com 【通信作者】赵可辉,教授,主任医师,研究方向:心脏超声,E-mail: zhaokh1202@sina.com
更新日期/Last Update: 2023-12-27