[1]刘涌涛,王宝珠,郭志涛.基于改进YOLOv7网络模型的肺结节检测算法[J].中国医学物理学杂志,2023,40(12):1509-1517.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
 LIU Yongtao,WANG Baozhu,GUO Zhitao.Lung nodule detection algorithm using improved YOLOv7 network model[J].Chinese Journal of Medical Physics,2023,40(12):1509-1517.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
点击复制

基于改进YOLOv7网络模型的肺结节检测算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第12期
页码:
1509-1517
栏目:
医学影像物理
出版日期:
2023-12-27

文章信息/Info

Title:
Lung nodule detection algorithm using improved YOLOv7 network model
文章编号:
1005-202X(2023)12-1509-09
作者:
刘涌涛王宝珠郭志涛
河北工业大学电子信息工程学院, 天津 300401
Author(s):
LIU Yongtao WANG Baozhu GUO Zhitao
School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
关键词:
肺结节YOLOv7注意力机制SIOUSIOU-NMS
Keywords:
Keywords: lung nodule YOLOv7 attention mechanism SIOU SIOU-NMS
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2023.12.009
文献标志码:
A
摘要:
针对当前肺结核型肺结节检测领域中目标检测算法存在的小目标检测精度不高和模型预测框定位不准的问题,提出一种基于YOLOv7的肺结节检测方法,旨在更有效地获取小肺结节并实现目标检测框的持续收敛。在YOLOv7网络模型框架下,在以下3个方面进行改进:首先对头部网络嵌入有效SimAM通道注意力机制获取跨通道信息和目标空域信息,以突出目标特征,使模型能够更加精确地识别感兴趣区域。其次采用SIOU边界损失函数,在原损失函数上增加角度成本,重新定义距离成本和形状成本,以提高收敛速度,降低损失值。最后利用SIOU-NMS替换非极大抑制算法,缓解因目标遮挡而导致错误抑制的现象。实验结果表明,在自制肺结节数据集上,改进网络模型与原YOLOv7模型相比,准确率和召回率分别提升2.9%和3.1%,置信度为0.5时平均精度均值(mAP:0.5)提高3.7%,该模型能有效辅助诊断肺结节。
Abstract:
To address the issues in the current lung nodule detection for tuberculosis where the existing object detection algorithms have limited precision for small nodules and often predict bounding box locations inaccurately, a lung nodule detection method based on YOLOv7 is presented for obtaining small lung nodules more effectively and realizing the continuous convergence of target detection box. Based on the framework of YOLOv7 network model, the improvements are made in the following 3 aspects. (1) The cross-channel information and target airspace information are obtained with the effective SimAM channel attention mechanism embed in the Head network, so as to highlight the target features and enable the model to identify the regions of interest more accurately. (2) SIOU boundary loss function is used to increase the angle cost on the original loss function, and redefine the distance cost and shape cost to improve the convergence rate and reduce the loss value. (3) SIOU-NMS is used to replace the non-maximum suppression algorithm for reducing the error suppression due to target occlusion. The results of experiments on a custom lung nodule dataset show that compared with the original YOLOv7, the proposed method improves accuracy and recall rate by 2.9% and 3.1%, and the mean average precision at a confidence threshold of 0.5 is increased by 3.7%. The model can effectively assist in the diagnosis of lung nodules.

相似文献/References:

[1]唐思源,刘燕茹,杨敏,等.基于CT图像的肺结节检测与识别[J].中国医学物理学杂志,2019,36(7):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
 TANG Siyuan,LIU Yanru,YANG Min,et al.Detection and recognition of pulmonary nodules based on CT images[J].Chinese Journal of Medical Physics,2019,36(12):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
[2]张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
 ZHANG Qianwen,CHEN Ming,QIN Yufang,et al.Lung nodule segmentation based on 3D ResUnet network[J].Chinese Journal of Medical Physics,2019,36(12):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
[3]曹宇,邢素霞,逄键梁,等.基于改进的VGG-16卷积神经网络的肺结节检测[J].中国医学物理学杂志,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
 CAO Yu,XING Suxia,PANG Jianliang,et al.Detection of pulmonary nodules based on improved VGG-16 convolution neural network[J].Chinese Journal of Medical Physics,2020,37(12):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
[4]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
 WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(12):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[5]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
 LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(12):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
[6]王新宇,赵静文,刘翔,等.人工智能在肺结节筛查和肺癌诊断中的应用[J].中国医学物理学杂志,2023,40(9):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
 WANG Xinyu,ZHAO Jingwen,LIU Xiang,et al.Applications of artificial intelligence in lung nodule detection and lung cancer diagnosis[J].Chinese Journal of Medical Physics,2023,40(12):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
[7]温帆,杨萍,张鑫,等.基于特征增强的多分支U-Net肺结节分割[J].中国医学物理学杂志,2023,40(11):1343.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.005]
 WEN Fan,YANG Ping,ZHANG Xin,et al.Pulmonary nodule segmentation using multi-branch U-Net based on feature enhancement[J].Chinese Journal of Medical Physics,2023,40(12):1343.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.005]
[8]米吾尔依提·海拉提,热娜古丽·艾合麦提尼亚孜,卡迪力亚·库尔班,等.基于改进YOLOv7的肝囊型包虫病超声图像小病灶检测[J].中国医学物理学杂志,2024,41(3):299.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.006]
 HAILATI Miwueryiti,AIHEMAITINIYAZI Renaguli,KUERBAN Kadiliya,et al.Small lesion detection in ultrasound images of hepatic cystic echinococcosis based on improved YOLOv7[J].Chinese Journal of Medical Physics,2024,41(12):299.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.006]
[9]牛树国,周福兴,颜克松,等.不同CT阈值下实性成分占比对小肺癌浸润性预测的影响[J].中国医学物理学杂志,2024,41(3):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
 NIU Shuguo,ZHOU Fuxing,YAN Kesong,et al.Predictive value of consolidation/tumor ratio at different CT thresholds for invasiveness in small lung cancer[J].Chinese Journal of Medical Physics,2024,41(12):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
[10]丛玉林,徐小虎,沈春林,等.基于CT特征构建预测肺结节良恶性的机器学习模型[J].中国医学物理学杂志,2024,41(10):1315.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.017]
 CONG Yulin,XU Xiaohu,SHEN Chunlin,et al.Machine learning model predicts benign and malignant pulmonary nodules based on CT features[J].Chinese Journal of Medical Physics,2024,41(12):1315.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.017]

备注/Memo

备注/Memo:
【收稿日期】2023-07-25 【基金项目】河北省高等学校科学技术研究项目(ZD2022115) 【作者简介】刘涌涛,硕士,研究方向:智能信息处理、计算机视觉、医学图像处理,E-mail: 1046373227@qq.com 【通信作者】王宝珠,教授,研究方向:信息检测、图像处理、多媒体通信,E-mail: wbz_china@126.com
更新日期/Last Update: 2023-12-27