[1]米吾尔依提·海拉提,热娜古丽·艾合麦提尼亚孜,卡迪力亚·库尔班,等.基于改进YOLOv7的肝囊型包虫病超声图像小病灶检测[J].中国医学物理学杂志,2024,41(3):299-308.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.006]
 HAILATI Miwueryiti,AIHEMAITINIYAZI Renaguli,KUERBAN Kadiliya,et al.Small lesion detection in ultrasound images of hepatic cystic echinococcosis based on improved YOLOv7[J].Chinese Journal of Medical Physics,2024,41(3):299-308.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.006]
点击复制

基于改进YOLOv7的肝囊型包虫病超声图像小病灶检测()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
41卷
期数:
2024年第3期
页码:
299-308
栏目:
医学影像物理
出版日期:
2024-03-27

文章信息/Info

Title:
Small lesion detection in ultrasound images of hepatic cystic echinococcosis based on improved YOLOv7
文章编号:
1005-202X(2024)03-0299-10
作者:
米吾尔依提·海拉提1热娜古丽·艾合麦提尼亚孜1卡迪力亚·库尔班1严传波2
1.新疆医科大学公共卫生学院, 新疆 乌鲁木齐 830011; 2.新疆医科大学医学工程技术学院, 新疆 乌鲁木齐 830011
Author(s):
HAILATI Miwueryiti1 AIHEMAITINIYAZI Renaguli1 KUERBAN Kadiliya1 YAN Chuanbo2
1. College of Public Health, Xinjiang Medical University, Urumqi 830011, China 2. College of Medical Engineering Technology, Xinjiang Medical University, Urumqi 830011, China
关键词:
囊型包虫病深度学习目标检测YOLOv7ECIoUGhostNet
Keywords:
Keywords: cystic echinococcosis deep learning object detection YOLOv7 ECIoU GhostNet
分类号:
R318;TP751
DOI:
DOI:10.3969/j.issn.1005-202X.2024.03.006
文献标志码:
A
摘要:
目的:提出一种基于YOLOv7用于检测肝囊型包虫病超声图像小病灶的方法。方法:首先用轻量级特征提取主干网络GhostNet替换原特征提取主干,降低模型总参数量;其次为改善YOLOv7网络的评价指标CIoU在作为损失函数时,检测精度较低的问题,用更优的ECIoU替换CIoU,进一步提高模型检测精度。结果:在自建的肝囊型包虫病超声图像小病灶数据集上进行训练,结果显示改进后的模型大小为59.4 G,mAP@0.5检测精度为88.1%,相比原始的模型性能得到提升,并超过其余主流检测方法。结论:本文模型能更高效地检测并分类肝囊型包虫病超声图像中的病灶位置和类别。
Abstract:
Abstract: Objective To propose a novel algorithm model based on YOLOv7 for detecting small lesions in ultrasound images of hepatic cystic echinococcosis. Methods The original feature extraction backbone was replaced with a lightweight feature extraction backbone network GhostNet for reducing the quantity of model parameters. To address the problem of low detection accuracy when the evaluation index CIoU of YOLOv7 was used as a loss function, ECIoU was substituting for CIoU, which further improved the model detection accuracy. Results The model was trained on a self-built dataset of small lesion ultrasound images of hepatic cystic echinococcosis. The results showed that the improved model had a size of 59.4 G and a detection accuracy of 88.1% for mAP@0.5, outperforming the original model and surpassing other mainstream detection methods. Conclusion The proposed model can detect and classify the location and category of lesions in ultrasound images of hepatic cystic echinococcosis more efficiently.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(3):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(3):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(3):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(3):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(3):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[9]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(3):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[10]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(3):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]

备注/Memo

备注/Memo:
【收稿日期】2023-10-20 【基金项目】国家自然科学基金(81560294);省部共建中亚高发病成因与防治国家重点实验室(SKL-HIDCA-2020-YG) 【作者简介】米吾尔依提·海拉提,硕士,研究方向:目标检测,E-mail: 2654458414@qq.com 【通信作者】严传波,教授,研究生导师,研究方向:医学图像处理,E-mail: ycbsky@126.com
更新日期/Last Update: 2024-03-27