相似文献/References:
[1]唐思源,刘燕茹,杨敏,等.基于CT图像的肺结节检测与识别[J].中国医学物理学杂志,2019,36(7):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
TANG Siyuan,LIU Yanru,YANG Min,et al.Detection and recognition of pulmonary nodules based on CT images[J].Chinese Journal of Medical Physics,2019,36(11):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
[2]张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
ZHANG Qianwen,CHEN Ming,QIN Yufang,et al.Lung nodule segmentation based on 3D ResUnet network[J].Chinese Journal of Medical Physics,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
[3]曹宇,邢素霞,逄键梁,等.基于改进的VGG-16卷积神经网络的肺结节检测[J].中国医学物理学杂志,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
CAO Yu,XING Suxia,PANG Jianliang,et al.Detection of pulmonary nodules based on improved VGG-16 convolution neural network[J].Chinese Journal of Medical Physics,2020,37(11):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
[4]沈镇炯,彭昭,孟祥银,等.基于级联3D U-Net的CT和MR视交叉自动分割方法[J].中国医学物理学杂志,2021,38(8):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
SHEN Zhenjiong,PENG Zhao,MENG Xiangyin,et al.Automatic optic chiasm segmentation using CT and MRI based on cascaded 3D U-Net[J].Chinese Journal of Medical Physics,2021,38(11):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
[5]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(11):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[6]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
[7]王新宇,赵静文,刘翔,等.人工智能在肺结节筛查和肺癌诊断中的应用[J].中国医学物理学杂志,2023,40(9):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
WANG Xinyu,ZHAO Jingwen,LIU Xiang,et al.Applications of artificial intelligence in lung nodule detection and lung cancer diagnosis[J].Chinese Journal of Medical Physics,2023,40(11):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
[8]刘涌涛,王宝珠,郭志涛.基于改进YOLOv7网络模型的肺结节检测算法[J].中国医学物理学杂志,2023,40(12):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
LIU Yongtao,WANG Baozhu,GUO Zhitao.Lung nodule detection algorithm using improved YOLOv7 network model[J].Chinese Journal of Medical Physics,2023,40(11):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
[9]牛树国,周福兴,颜克松,等.不同CT阈值下实性成分占比对小肺癌浸润性预测的影响[J].中国医学物理学杂志,2024,41(3):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
NIU Shuguo,ZHOU Fuxing,YAN Kesong,et al.Predictive value of consolidation/tumor ratio at different CT thresholds for invasiveness in small lung cancer[J].Chinese Journal of Medical Physics,2024,41(11):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
[10]刘晶,徐皓,崔欣欣,等.基于多尺度边缘分割与混合注意力机制的脊柱CT图像分割[J].中国医学物理学杂志,2024,41(4):463.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.011]
LIU Jing,XU Hao,CUI Xinxin,et al.Spine CT image segmentation based on multi-scale boundary segmentation and hybrid attention mechanism[J].Chinese Journal of Medical Physics,2024,41(11):463.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.011]