[1]温帆,杨萍,张鑫,等.基于特征增强的多分支U-Net肺结节分割[J].中国医学物理学杂志,2023,40(11):1343-1349.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.005]
 WEN Fan,YANG Ping,ZHANG Xin,et al.Pulmonary nodule segmentation using multi-branch U-Net based on feature enhancement[J].Chinese Journal of Medical Physics,2023,40(11):1343-1349.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.005]
点击复制

基于特征增强的多分支U-Net肺结节分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第11期
页码:
1343-1349
栏目:
医学影像物理
出版日期:
2023-11-24

文章信息/Info

Title:
Pulmonary nodule segmentation using multi-branch U-Net based on feature enhancement
文章编号:
1005-202X(2023)11-1343-07
作者:
温帆杨萍张鑫田吉王金华
北京联合大学智慧城市学院, 北京 100101
Author(s):
WEN Fan YANG Ping ZHANG Xin TIAN Ji WANG Jinhua
Smart City College, Beijing Union University, Beijing 100101, China
关键词:
肺结节3D U-NetTransformer多尺度残差块坐标注意力
Keywords:
Keywords: pulmonary nodule 3D U-Net Transformer multi-scale residual block coordinate attention
分类号:
R318;TP391.41
DOI:
DOI:10.3969/j.issn.1005-202X.2023.11.005
文献标志码:
A
摘要:
针对肺结节尺度差异大、边界纹理不清晰、背景干扰严重导致的肺结节分割不精确的问题,以3D U-Net为基础,引入Transformer结构,设计一种基于特征增强的多分支U-Net肺结节分割算法。Transformer从全局角度提取肺结节及周边组织的结构特征,浅层3D U-Net提取图像纹理特征;利用上述结构特征及纹理特征进行特征增强;多尺度残差块和3D坐标注意力对3D U-Net进行改进,用于提取特征增强后的肺结节多尺度信息,并在3D U-Net解码器基础上,对深层语义信息进行复用,最终实现肺结节分割。在LIDC-IDRI数据集上对该模型进行验证,精确度、敏感度、Dice相似性系数分别达到90.04%、86.64%、88.80%,综合分割性能优于其他算法。
Abstract:
Abstract: To address the problem of the inaccurate segmentation of pulmonary nodules caused by large scale differences, unclear boundary texture and serious background interference, a multi-branch U-Net based on feature enhancement is designed for pulmonary nodules segmentation. The method uses Transformer to extract structural features of pulmonary nodules and surrounding tissues from a global perspective, and shallow 3D U-Net to extract the texture features. The extracted both structural and texture features are used for feature enhancement. In addition, a multi-scale residual block and 3D coordinate attention module are designed to modify 3D U-Net for obtaining multi-scale information of pulmonary nodules with enhanced features. Based on 3D U-Net decoder, the deep semantic information is reused for accomplishing the segmentation of pulmonary nodules. The verification on LIDC-IDRI dataset shows that the proposed model has a precision, sensitivity and Dice similarity coefficient of 90.04%, 86.64% and 88.80%, respectively, exhibiting superior comprehensive segmentation performance as compared with other algorithms.

相似文献/References:

[1]唐思源,刘燕茹,杨敏,等.基于CT图像的肺结节检测与识别[J].中国医学物理学杂志,2019,36(7):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
 TANG Siyuan,LIU Yanru,YANG Min,et al.Detection and recognition of pulmonary nodules based on CT images[J].Chinese Journal of Medical Physics,2019,36(11):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
[2]张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
 ZHANG Qianwen,CHEN Ming,QIN Yufang,et al.Lung nodule segmentation based on 3D ResUnet network[J].Chinese Journal of Medical Physics,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
[3]曹宇,邢素霞,逄键梁,等.基于改进的VGG-16卷积神经网络的肺结节检测[J].中国医学物理学杂志,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
 CAO Yu,XING Suxia,PANG Jianliang,et al.Detection of pulmonary nodules based on improved VGG-16 convolution neural network[J].Chinese Journal of Medical Physics,2020,37(11):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
[4]沈镇炯,彭昭,孟祥银,等.基于级联3D U-Net的CT和MR视交叉自动分割方法[J].中国医学物理学杂志,2021,38(8):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
 SHEN Zhenjiong,PENG Zhao,MENG Xiangyin,et al.Automatic optic chiasm segmentation using CT and MRI based on cascaded 3D U-Net[J].Chinese Journal of Medical Physics,2021,38(11):950.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.006]
[5]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
 WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(11):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[6]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
 LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
[7]王新宇,赵静文,刘翔,等.人工智能在肺结节筛查和肺癌诊断中的应用[J].中国医学物理学杂志,2023,40(9):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
 WANG Xinyu,ZHAO Jingwen,LIU Xiang,et al.Applications of artificial intelligence in lung nodule detection and lung cancer diagnosis[J].Chinese Journal of Medical Physics,2023,40(11):1182.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.020]
[8]刘涌涛,王宝珠,郭志涛.基于改进YOLOv7网络模型的肺结节检测算法[J].中国医学物理学杂志,2023,40(12):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
 LIU Yongtao,WANG Baozhu,GUO Zhitao.Lung nodule detection algorithm using improved YOLOv7 network model[J].Chinese Journal of Medical Physics,2023,40(11):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
[9]牛树国,周福兴,颜克松,等.不同CT阈值下实性成分占比对小肺癌浸润性预测的影响[J].中国医学物理学杂志,2024,41(3):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
 NIU Shuguo,ZHOU Fuxing,YAN Kesong,et al.Predictive value of consolidation/tumor ratio at different CT thresholds for invasiveness in small lung cancer[J].Chinese Journal of Medical Physics,2024,41(11):323.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.009]
[10]刘晶,徐皓,崔欣欣,等.基于多尺度边缘分割与混合注意力机制的脊柱CT图像分割[J].中国医学物理学杂志,2024,41(4):463.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.011]
 LIU Jing,XU Hao,CUI Xinxin,et al.Spine CT image segmentation based on multi-scale boundary segmentation and hybrid attention mechanism[J].Chinese Journal of Medical Physics,2024,41(11):463.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.011]

备注/Memo

备注/Memo:
【收稿日期】2023-10-26 【基金项目】国家自然科学基金(62172045,62272049) 【作者简介】温帆,硕士研究生,研究方向:医学图像处理,E-mail: 905525170@qq.com? 【通信作者】杨萍,博士,副教授,研究方向:信号与信息处理、医学图像处理,E-mail: xxtyangping@buu.edu.cn
更新日期/Last Update: 2023-11-24