[1]朱佳琦,刘翔,宋家琳.全局与局部特征结合的肝硬化病程分类方法[J].中国医学物理学杂志,2023,40(11):1362-1369.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.008]
 ZHU Jiaqi,LIU Xiang,SONG Jialin.Classification of liver cirrhosis using global and local features[J].Chinese Journal of Medical Physics,2023,40(11):1362-1369.[doi:DOI:10.3969/j.issn.1005-202X.2023.11.008]
点击复制

全局与局部特征结合的肝硬化病程分类方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第11期
页码:
1362-1369
栏目:
医学影像物理
出版日期:
2023-11-24

文章信息/Info

Title:
Classification of liver cirrhosis using global and local features
文章编号:
1005-202X(2023)11-1362-08
作者:
朱佳琦1刘翔1宋家琳2
1.上海工程技术大学电子电气工程学院, 上海 201620; 2.中国人民解放军第二军医大学长征医院超声诊疗科, 上海 200003
Author(s):
ZHU Jiaqi1 LIU Xiang1 SONG Jialin2
1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2. Department of Ultrasound Diagnosis and Treatment, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
关键词:
肝硬化计算机辅助诊断超声图像处理特征分析
Keywords:
Keywords: liver cirrhosis computer-aided diagnosis ultrasound image processing feature analysis
分类号:
R318;R657.31
DOI:
DOI:10.3969/j.issn.1005-202X.2023.11.008
文献标志码:
A
摘要:
目的:提出一种肝脏组织全局特征与局部特征结合的肝硬化病程分类方法,用于解决目前肝硬化诊断主要依赖于人工检测的问题。方法:收集47例乙型肝炎肝硬化患者(依据Child-Pugh改良分级标准分为轻度肝硬化组、中度肝硬化组、重度肝硬化组)及20名健康志愿者(正常对照组)的二维高频超声图像,提出差分滤波器方法提取图像的码距,并提取角点、条索、腹水等特征进行定量分析。建立两阶段分类模型,第一阶段采用RBF核函数的SVM,将轻度与中度肝硬化归为一组,正常与重度肝硬化归为一组进行分类,避免两组之间的互相干扰。第二阶段采用贝叶斯对RF进行参数调优,调整不同特征的重要性权重,对每组的两个类别分别分类,提升肝硬化病程分类的准确率。结果:提出的特征均具有统计学意义(P<0.05),采用SVM-RF模型对正常对照组、轻度肝硬化组、中度肝硬化组、重度肝硬化组4个阶段的最终分类准确率分别达到93.11%、88.19%、91.93%和96.86%。结论:本文方法可以有效提取符合医生视角的全局特征以及局部特征,辅助诊断肝硬化病程。
Abstract:
Abstract: Objective To propose a classification method for liver cirrhosis diagnosis using both global and local features of liver tissues, thereby overcoming the current problem that the diagnosis of liver cirrhosis mainly relies on manual detection. Methods The two-dimensional high-frequency ultrasound images were collected from 47 patients with hepatitis B cirrhosis (divided into mild, moderate and severe cirrhosis groups according to Child-Pugh score) and 20 healthy volunteers (normal control group). The differential filter was used to obtain the code distance of the image, and then detect the corner point, cord, ascites and other features for quantitative analysis. A two-stage classification model was established. The support vector machine (SVM) of radial basis function was used in the first stage of classification to group mild and moderate cirrhosis into one category, while normal controls and severe cirrhosis into the other category for avoiding mutual interference between the two categories. In the second stage, after parameters tuning with Bayesian, random forest (RF) algorithm was used to adjust the importance weights of different features for further enhancing the classification accuracy of liver cirrhosis. Results All of the selected features were statistically significant (P<0.05), and the SVM-RF model had an accuracy of 93.11%, 88.19%, 91.93% and 96.86% for diagnosing normal liver, mildly cirrhosis liver, moderate cirrhosis liver and severe cirrhosis liver. Conclusion The proposed SVM-RF method can effectively extract the global and local features that conform to the doctors perspective, and assist in cirrhosis diagnosis.

相似文献/References:

[1]王晓飞,聂生东,王远军,等.基于MRI的脑肿瘤计算机辅助检测技术研究进展[J].中国医学物理学杂志,2014,31(01):4635.[doi:10.3969/j.issn.1005-202X.2014.01.010]
[2]张泽文,张才擎,张成琪.基于高清晰度CT图像的孤立性肺结节计算机辅助诊断系统[J].中国医学物理学杂志,2015,32(05):669.[doi:doi:10.3969/j.issn.1005-202X.2015.05.012]
[3]何锋坚,李立夫,刘素英,等.经皮微波消融治疗肝硬化脾功能亢进症的临床研究[J].中国医学物理学杂志,2016,33(5):510.[doi:10.3969/j.issn.1005-202X.2016.05.016]
 [J].Chinese Journal of Medical Physics,2016,33(11):510.[doi:10.3969/j.issn.1005-202X.2016.05.016]
[4]蔡刁龙. 微波治疗在合并肝硬化胆囊切除术胆囊床出血中的应用[J].中国医学物理学杂志,2018,35(6):742.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.023]
 CAI Diaolong. Application of microwave therapy in cholecystectomy for cholecystolithiasis complicated with cirrhosis[J].Chinese Journal of Medical Physics,2018,35(11):742.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.023]
[5]任占丽,雷雨欣,陈晓侠,等. 能谱CT基物质分离技术在肝硬化与正常肝脏血流定量研究中的应用[J].中国医学物理学杂志,2019,36(10):1200.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.017]
 REN Zhanli,LEI Yuxin,CHEN Xiaoxia,et al. Application of basis material decomposition technique with energy spectral CT in the quantitative study on blood flows in cirrhotic liver and healthy liver[J].Chinese Journal of Medical Physics,2019,36(11):1200.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.017]
[6]吴秀明,王霞丽,吕国荣,等.计算机辅助系统在诊断乳腺良恶性肿瘤中的应用[J].中国医学物理学杂志,2020,37(3):374.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.022]
 WU Xiuming,WANG Xiali,LYU Guorong,et al.Application of computer-aided detection in ultrasound diagnosis of benign and malignant breast tumors[J].Chinese Journal of Medical Physics,2020,37(11):374.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.022]
[7]王美文,王艳春,肖沪生,等.S-Detect技术在乳腺超声检查中的诊断性能[J].中国医学物理学杂志,2020,37(4):450.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.010]
 WANG Meiwen,WANG Yanchun,XIAO Husheng,et al.Diagnostic performances of S-Detect technique in breast ultrasound examination[J].Chinese Journal of Medical Physics,2020,37(11):450.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.010]
[8]叶冯颖,杨文敏,李尚青,等.计算机辅助诊断软件联合多学科建立甲状腺结节恶性风险预测模型[J].中国医学物理学杂志,2021,38(1):54.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.010]
 YE Fengying,YANG Wenmin,LI Shangqing,et al.A predictive model of thyroid nodules: based on the CAD software and multi-disciplinary indicators[J].Chinese Journal of Medical Physics,2021,38(11):54.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.010]
[9]牛广利,刘翔,宋家琳,等.结合快速傅里叶变换的肝实质病变特征量化检测[J].中国医学物理学杂志,2022,39(2):188.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.010]
 NIU Guangli,LIU Xiang,SONG Jialin,et al.Quantitative detection of liver parenchymal lesion characteristics after the combination with fast Fourier transform[J].Chinese Journal of Medical Physics,2022,39(11):188.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.010]
[10]蒋芙蓉,赵静文,刘翔,等.基于病理图像的计算机辅助诊断进展[J].中国医学物理学杂志,2022,39(3):384.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.020]
 JIANG Furong,ZHAO Jingwen,LIU Xiang,et al.Advances in computer-aided diagnosis based on pathological images[J].Chinese Journal of Medical Physics,2022,39(11):384.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.020]

备注/Memo

备注/Memo:
【收稿日期】2023-07-05 【基金项目】上海市自然科学基金(19ZR1421500) 【作者简介】朱佳琦,硕士研究生,研究方向:医学图像处理,E-mail: 1481784173@qq.com 【通信作者】刘翔,博士,教授,研究生导师,研究方向:计算机视觉与人工生命,E-mail: xliu@sues.edu.cn
更新日期/Last Update: 2023-11-24