相似文献/References:
[1]钱姗姗,边兆英,路利军,等.两种基于Anscombe变换域滤波的低剂量CT重建方法讨论[J].中国医学物理学杂志,2013,30(02):4023.[doi:10.3969/j.issn.1005-202X.2013.02.015]
[2]陈伟国,贺捷新,莫天澜,等. 低剂量CT心肌灌注鲁棒去卷积参数成像方法[J].中国医学物理学杂志,2017,34(11):1131.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.010]
CHEN Weiguo,HE Jiexin,MO Tianlan,et al. Robust deconvolution for low-dose CT myocardial perfusion imaging[J].Chinese Journal of Medical Physics,2017,34(6):1131.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.010]
[3]刘海坤,王健,杨嵩,等. 基于深度学习和二维高斯拟合的视网膜血管管径测量方法[J].中国医学物理学杂志,2019,36(2):171.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.010]
LIU Haikun,WANG Jian,YANG Song,et al. Retinal vessel diameter measurement based on depth learning and two-dimensional Gaussian fitting[J].Chinese Journal of Medical Physics,2019,36(6):171.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.010]
[4]谢丰雪,杨帆,冯维,等.基于深度学习的低剂量CT图像去噪[J].中国医学物理学杂志,2022,39(5):547.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.004]
XIE Fengxue,YANG Fan,FENG Wei,et al.Low-dose CT image denoising based on deep learning[J].Chinese Journal of Medical Physics,2022,39(6):547.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.004]
[5]崔奥宇,许幸芬,田苗,等.基于全卷积神经网络的冠状动脉中心线提取方法[J].中国医学物理学杂志,2023,40(4):429.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.006]
CUI Aoyu,XU Xingfen,TIAN Miao,et al.Coronary artery centerline extraction method based on fully convolutional network[J].Chinese Journal of Medical Physics,2023,40(6):429.[doi:DOI:10.3969/j.issn.1005-202X.2023.04.006]
[6]李晓增,王宝珠,郭志涛,等.一种用于低剂量CT的微小细节保护CNN与Transformer融合去噪方法[J].中国医学物理学杂志,2024,41(7):842.[doi:1005-202X(2024)07-0842-09]
LI Xiaozeng,WANG Baozhu,GUO Zhitao,et al.Low-dose CT denoising method with CNN and Transformer to preserve tiny details[J].Chinese Journal of Medical Physics,2024,41(6):842.[doi:1005-202X(2024)07-0842-09]