[1]魏坤,沈记全,赵艳梅.MAUNet:用于皮肤病变分割的轻量级模型[J].中国医学物理学杂志,2023,40(5):555-561.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.006]
 WEI Kun,SHEN Jiquan,ZHAO Yanmei.MAUNet: a lightweight model for skin lesion segmentation[J].Chinese Journal of Medical Physics,2023,40(5):555-561.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.006]
点击复制

MAUNet:用于皮肤病变分割的轻量级模型()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第5期
页码:
555-561
栏目:
医学影像物理
出版日期:
2023-05-26

文章信息/Info

Title:
MAUNet: a lightweight model for skin lesion segmentation
文章编号:
1005-202X(2023)05-0555-07
作者:
魏坤1沈记全1赵艳梅2
1.河南理工大学计算机科学与技术学院, 河南 焦作 450000; 2.河南省儿童医院重症监护室, 河南 郑州 460000
Author(s):
WEI Kun1 SHEN Jiquan1 ZHAO Yanmei2
1. College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 450000, China 2. Intensive Care Unit, Henan Childrens Hospital, Zhengzhou 460000, China
关键词:
医学图像分割注意力机制皮肤病识别轻量级UNet
Keywords:
Keywords: medical image segmentation attention mechanism recognition of skin disease lightweight UNet
分类号:
R318;TP391.41
DOI:
DOI:10.3969/j.issn.1005-202X.2023.05.006
文献标志码:
A
摘要:
针对当前深度学习分割算法参数数量多和计算复杂度高的问题,提出了一种融合多种注意力机制的轻量级模型MAUNet用于皮肤病变分割。该模型在UNet网络基础上融合深度可分离卷积和门控注意力机制模块,用于提取全局和局部特征信息;融入外部注意力机制模块来增强样本间的联系;利用空间和通道注意力模块分别提取通道和空间特征。以ISIC2017皮肤病公开数据集作为数据源,改进的UNet模型实现特征提取与分类。与基线模型UNet相比,平均交并比和Dice相似性系数分别提高了2.18%和1.28%,同时参数量和计算复杂度仅为基线模型的2.1%和0.58%。实验结果表明该模型在参数数量平衡性、计算复杂度和分割检测性能上均达到了较好的水平。
Abstract:
Abstract: The current depth learning segmentation algorithm has the problems of numerous parameters and high computational complexity. Therefore, a lightweight algorithm (MAUNet) which combines UNet and multiple attention mechanisms is proposed for skin lesion segmentation. The model integrates depth-wise separable convolution and gated attention mechanism modules on the basis of UNet to extract global and local feature information, adopts the external attention mechanism module to enhance the connection between samples, and uses the spatial and channel attention mechanism modules to extract channel and spatial features. The MAUNet model realizes feature extraction and classification on ISIC2017 skin disease public data set. Compared with the baseline model (UNet), the proposed model increases mIoU and DSC by 2.18% and 1.28% respectively, while reducing the number of parameters and computational complexity which were only 2.1% and 0.58% of the baseline model. The experimental results show that the model can balance the number of parameters, lower the computational complexity and perform well in segmentation and detection.

相似文献/References:

[1]万俊,聂生东,王远军,等.基于MRI的脑肿瘤分割技术研究进展[J].中国医学物理学杂志,2013,30(04):4266.[doi:10.3969/j.issn.1005-202X.2013.04.013]
[2]林江,戴齐,欧阳婷雪,等.一种边界和马尔可夫随机场相结合的脑MRI医学图像分割方法[J].中国医学物理学杂志,2015,32(05):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
 [J].Chinese Journal of Medical Physics,2015,32(5):717.[doi:doi:10.3969/j.issn.1005-202X.2015.05.023]
[3]吴迪,胡胜,刘伟峰,等. 基于特征融合视觉显著性的医学图像分割[J].中国医学物理学杂志,2018,35(6):670.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
 WU Di,HU Sheng,LIU Weifeng,et al. Medical image segmentation based on visual saliency of feature fusion[J].Chinese Journal of Medical Physics,2018,35(5):670.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.010]
[4]刘国才,官文静,田娟秀,等. 集成自适应回归核的肿瘤生物靶区随机游走勾画方法[J].中国医学物理学杂志,2018,35(7):758.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.004]
 LIU Guocai,GUAN Wenjing,TIAN Juanxiu,et al. A random walk method with adaptive regression-kernel for delineation of biological target volumes of tumors[J].Chinese Journal of Medical Physics,2018,35(5):758.[doi:DOI:10.3969/j.issn.1005-202X.2018.07.004]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(5):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
 JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(5):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
[7]张富利,杨安宁,路娜,等.基于FC_DenseNet深度学习网络自动分割肺癌放疗中的危及器官[J].中国医学物理学杂志,2021,38(2):259.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.024]
 ZHANG Fuli,YANG Anning,LU Na,et al.FC_Densenet-based autosegmentation of organs-at-risk in lung cancer radiotherapy[J].Chinese Journal of Medical Physics,2021,38(5):259.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.024]
[8]周意龙,卫子然,蔡清萍,等.基于卷积神经网络胃癌分割与T分期算法[J].中国医学物理学杂志,2022,39(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
 ZHOU Yilong,WEI Ziran,CAI Qingping,et al.Gastric cancer segmentation and T staging algorithm based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(5):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
[9]李启行,廖薇.基于注意力机制的生物医学文本分类模型[J].中国医学物理学杂志,2022,39(4):518.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.023]
 LI Qihang,LIAO Wei.Biomedical text classification model based on attention mechanism[J].Chinese Journal of Medical Physics,2022,39(5):518.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.023]
[10]方新林,方艳红,王迪.基于多模态特征融合的脑瘤图像分割方法[J].中国医学物理学杂志,2022,39(6):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
 FANG Xinlin,FANG Yanhong,WANG Di.Brain tumor image segmentation method based on multi-modal feature fusion[J].Chinese Journal of Medical Physics,2022,39(5):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
[11]周金治,胡震,郭莉莉,等.基于GAN-DAUnet的肝脏CT图像肿瘤分割算法[J].中国医学物理学杂志,2023,40(8):971.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.008]
 ZHOU Jinzhi,HU Zhen,et al.Liver CT image tumor segmentation algorithm based on GAN-DAUnet[J].Chinese Journal of Medical Physics,2023,40(5):971.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.008]

备注/Memo

备注/Memo:
【收稿日期】2023-01-10 【基金项目】国家自然科学基金(61972134) 【作者简介】魏坤,硕士,研究方向:图像处理和网络安全,E-mail: weikunzz@qq.com 【通信作者】沈记全,博士,教授,研究方向:云计算和网格计算,E-mail: sjq@pu.edu.cn
更新日期/Last Update: 2023-05-26