[1]王怡伟,李晓兵,聂生东,等.基于深度学习的超声多模态乳腺肿块良恶性分类[J].中国医学物理学杂志,2023,40(8):988-995.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.011]
 WANG Yiwei,LI Xiaobing,NIE Shengdong,et al.Deep learning-based classification for benign and malignant breast masses using multimodal ultrasound images[J].Chinese Journal of Medical Physics,2023,40(8):988-995.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.011]
点击复制

基于深度学习的超声多模态乳腺肿块良恶性分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第8期
页码:
988-995
栏目:
医学影像物理
出版日期:
2023-09-01

文章信息/Info

Title:
Deep learning-based classification for benign and malignant breast masses using multimodal ultrasound images
文章编号:
1005-202X(2023)08-0988-08
作者:
王怡伟1李晓兵1聂生东1姜立新2万财凤2蒋卓韵1贾守强3
1.上海理工大学健康科学与工程学院, 上海 200093; 2.上海交通大学医学院附属仁济医院超声科, 上海 200025; 3.山东第一医科大学附属济南人民医院影像科, 山东 济南 271100
Author(s):
WANG Yiwei1 LI Xiaobing1 NIE Shengdong1 JIANG Lixin2 WAN Caifeng2 JIANG Zhuoyun1 JIA Shouqiang3
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China 3. Department of Imaging, Jinan Peoples Hospital Affiliated to Shandong First Medical University, Jinan 271100, China
关键词:
乳腺癌深度学习超声多模态注意力机制图像分类
Keywords:
Keywords: breast cancer deep learning ultrasound multimodality attention mechanism image classification
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2023.08.011
文献标志码:
A
摘要:
针对超声单模态信息量少的问题,提出基于双路神经网络的多模态乳腺肿块分类模型。收集来自上海交通大学医学院附属仁济医院2021年的96例乳腺癌患者(51例恶性,45例良性)的807张灰阶图像和807张弹性图像进行实验。首先,对传统的ResNeXt101模型进行改进,去掉最后的平均池化层和全连接层并添加注意力机制模块,以提高模型对图像重要信息的关注;然后,将病人同一病灶的灰阶图像和弹性图像分别输入至两个改进的ResNeXt101网络中;最后,将两路网络输出的特征进行拼接融合,构建全连接分类层进行良恶性鉴别。实验结果表明,使用双路网络准确率为84.27%,ROC曲线下面积(AUC)为0.932,高于单模态的准确率和AUC值。
Abstract:
Abstract: A breast mass classification model based on dual neural networks and multimodal ultrasound images is proposed to address the issue of deficiency of information in monomodal ultrasound image. The 807 gray-scale images and 807 elastograms of 96 breast cancer patients (51 malignant and 45 benign) from Renji Hospital, School of Medicine, Shanghai Jiaotong University in 2021 were collected for experiment. The traditional ResNeXt101 model is improved by removing the final average pooling layer and fully connected layer, and adding an attention mechanism module to enhance the attention to important image information. Then, gray-scale images and elastograms of the same lesion of the patient are input into two improved ResNeXt101 networks separately and the features output from the two networks are concatenated and fused to construct a fully connected classification layer for the discrimination of benign and malignant breast masses. The experimental results show that the accuracy rate and AUC of dual neural network for multimodal ultrasound images are 84.27% and 0.932, higher than those of single neural network for monomodal ultrasound image.

相似文献/References:

[1]柏 晗,王 丽,刘旭红,等.左乳腺5种不同主野分布IMRT计划的剂量比较分析[J].中国医学物理学杂志,2015,32(02):210.[doi:10.3969/j.issn.1005-202X.2015.02.013]
[2]张晋建,黎 静,文 婷,等.Arc CHECK在乳腺癌螺旋断层放疗计划剂量验证中的应用[J].中国医学物理学杂志,2015,32(02):244.[doi:10.3969/j.issn.1005-202X.2015.02.021]
[3]白 雪,杜向慧,王升晔,等.半野技术结合非共面照射技术在乳腺癌胸锁联合照射中的应用[J].中国医学物理学杂志,2014,31(03):4849.[doi:10.3969/j.issn.1005-202X.2014.03.001]
[4]赵永亮,储开岳,吴建亭,等.两种不同调强技术配合主动呼吸控制系统在乳腺癌放疗中的比较[J].中国医学物理学杂志,2014,31(03):4862.[doi:10.3969/j.issn.1005-202X.2014.03.004]
[5]花威,张西志,张先稳,等.RapidArc在乳腺癌术后放疗中的应用[J].中国医学物理学杂志,2013,30(02):3984.[doi:10.3969/j.issn.1005-202X.2013.02.005]
[6]徐金济,成俊,李伟,等.左侧乳腺癌改良根治术后逆向调强放射治疗的摆位误差分析[J].中国医学物理学杂志,2013,30(05):4358.[doi:10.3969/j.issn.1005-202X.2013.05.004]
[7]孟慧鹏,孙小喆,孙劲松,等.右乳腺癌术后放疗中VMAT和dIMRT的剂量学比较[J].中国医学物理学杂志,2013,30(05):4387.[doi:10.3969/j.issn.1005-202X.2013.05.011]
[8]刘旭红,陈晓,艾毅钦,等.早期左乳腺癌保乳术后仰卧位和俯卧位照射剂量学比较与分析[J].中国医学物理学杂志,2015,32(05):737.[doi:doi:10.3969/j.issn.1005-202X.2015.05.028]
 [J].Chinese Journal of Medical Physics,2015,32(8):737.[doi:doi:10.3969/j.issn.1005-202X.2015.05.028]
[9]张艺宝,吴昊,李莎,等.临床前验证与几何对比分析基于图谱库的危及器官自动勾画[J].中国医学物理学杂志,2015,32(06):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]
 [J].Chinese Journal of Medical Physics,2015,32(8):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]
[10]段云龙,杨涛,曲宝林,等.乳腺癌保乳切线野三维适形、切线野正向调强及逆向调强放疗的剂量学评估[J].中国医学物理学杂志,2015,32(06):841.[doi:doi:10.3969/j.issn.1005-202X.2015.06.017]
 [J].Chinese Journal of Medical Physics,2015,32(8):841.[doi:doi:10.3969/j.issn.1005-202X.2015.06.017]
[11]时飞跃,王敏,赵紫婷,等.基于深度学习的rtStation软件自动勾画乳腺癌术后患者心脏结构的应用分析[J].中国医学物理学杂志,2021,38(6):661.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.001]
 SHI Feiyue,WANG Min,et al.Application analysis of deep learning-based rtStation software in automatic delineation of the heart in patients after surgery for breast cancer[J].Chinese Journal of Medical Physics,2021,38(8):661.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.001]

备注/Memo

备注/Memo:
【收稿日期】2022-11-12 【基金项目】上海市自然科学基金(19ZR1436200, 19440760800) 【作者简介】王怡伟,硕士,研究方向:医学图像处理,E-mail: 1316266695@qq.com 【通信作者】蒋卓韵,讲师,博士,研究方向:医学图像处理,E-mail: yuna_jiang@163.com;贾守强,主任医师,博士,研究方向:神经影像学,E-mail: jshqlw@163.com
更新日期/Last Update: 2023-09-06