[1]于永强,刘健,孙仁诚,等.基于多特征多关系图卷积神经网络的癫痫脑电分类[J].中国医学物理学杂志,2023,40(5):595-601.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.012]
 YU Yongqiang,LIU Jian,SUN Rencheng,et al.Classification of epileptic electroencephalogram signal using graph convolutional neural network with multiple features and multiple relations[J].Chinese Journal of Medical Physics,2023,40(5):595-601.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.012]
点击复制

基于多特征多关系图卷积神经网络的癫痫脑电分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第5期
页码:
595-601
栏目:
医学信号处理与医学仪器
出版日期:
2023-05-26

文章信息/Info

Title:
Classification of epileptic electroencephalogram signal using graph convolutional neural network with multiple features and multiple relations
文章编号:
1005-202X(2023)05-0595-07
作者:
于永强1刘健2孙仁诚1隋毅1
1.青岛大学计算机科学技术学院, 山东 青岛 266071; 2.青岛市口腔医院, 山东 青岛 266000
Author(s):
YU Yongqiang1 LIU Jian2 SUN Rencheng 1 SUI Yi 1
1. College of Computer Science and Technology, Qingdao University, Qingdao 266071, China 2. Qingdao Stomatological Hospital, Qingdao 266000, China
关键词:
脑电图癫痫图卷积神经网络多关系图
Keywords:
Keywords: electroencephalogram epilepsy graph convolutional neural network multiple-relation graph
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2023.05.012
文献标志码:
A
摘要:
目的:提出一种基于多特征多关系图卷积神经网络的癫痫脑电分类方法,改进图卷积神经网络在癫痫脑电分类领域的应用,提升分类准确率。方法:分别提取癫痫脑电信号的1个频域特征、3个时频域特征和2个非线性动力学特征作为模型节点的特征。提取脑电通道之间的空间相似性和频谱相似性,融合两种通道相似性作为整体图节点之间的边关系矩阵。结果:在TUEP数据集上进行实验,准确率、精确率、召回率、F1分数、AUC结果分别为:0.87±0.02、0.91±0.04、0.82±0.04、0.86±0.02、0.90±0.03。结论:提出的模型与单特征和单关系的图卷积神经网络相比,对于癫痫脑电分类的提升效果明显。
Abstract:
Abstract: Objective To present a graph convolutional neural network (GCNN) based on multi-feature and multi-relations for the electroencephalogram (EEG) signal classification in epilepsy for promoting the application of GCNN in epileptic EEG signal classification and improving the classification accuracy. Methods One frequency domain feature, 3 time frequency domain features and 2 nonlinear dynamical features of epileptic EEG signals were taken as features of model nodes. The spatial similarity and spectral similarity between EEG channels were extracted and fused as the edge relationship matrix between the overall graph nodes. Results Experiments were conducted on the TUEP dataset to evaluate the classification performance. The proposed model achieved an accuracy, precision, recall, F1-score, and AUC of 0.87±0.02, 0.91±0.04, 0.82±0.04, 0.86±0.02, and 0.90±0.03, respectively. Conclusion The proposed model is advantageous over the single-feature and single-relation GCNN in the classification of epileptic EEG signal.

相似文献/References:

[1]李凯,姜永涛,于海波,等.癫痫治疗效果的复杂度评估分析[J].中国医学物理学杂志,2013,30(03):4169.[doi:10.3969/j.issn.1005-202X.2013.03.019]
[2]崔招焕,等.大鼠癫痫脑电信号采集[J].中国医学物理学杂志,2016,33(2):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
 [J].Chinese Journal of Medical Physics,2016,33(5):118.[doi:10.3969/j.issn.1005-202X.2016.02.003]
[3]周静,吴效明.基于样本熵的睡眠呼吸暂停综合征脑电研究[J].中国医学物理学杂志,2016,33(7):722.[doi:10.3969/j.issn.1005-202X.2016.07.017]
 [J].Chinese Journal of Medical Physics,2016,33(5):722.[doi:10.3969/j.issn.1005-202X.2016.07.017]
[4]李春,黄波,唐海宁,等. 癫痫伴发焦虑抑郁患者脑神经递质活动的脑电超慢涨落图表现分析[J].中国医学物理学杂志,2018,35(3):369.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.022]
 LI Chun,HUANG Bo,TANG Haining,et al. Characteristics of intracerebral neurotransmitter activity on encephalofluctuograph in epileptic patients with anxiety and depression[J].Chinese Journal of Medical Physics,2018,35(5):369.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.022]
[5]苏克阳,曾景阳,谢文钦,等. 近似熵在脑电监测麻醉深度中的应用[J].中国医学物理学杂志,2019,36(1):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
 SU Keyang,ZENG Jingyang,XIE Wenqin,et al. Application of EEG approximate entropy in monitoring the depth of anesthesia[J].Chinese Journal of Medical Physics,2019,36(5):117.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.023]
[6]赵彦富,随力,李月如.基于脑电图的脑疲劳检测研究进展[J].中国医学物理学杂志,2019,36(11):1312.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.013]
 ZHAO Yanfu,SUI Li,LI Yueru.Progress on brain fatigue detection based on electroencephalogram[J].Chinese Journal of Medical Physics,2019,36(5):1312.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.013]
[7]赵彦富,随力,李月如.基于脑电图的脑疲劳检测研究进展[J].中国医学物理学杂志,2019,36(11):1312.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.013]
 ZHAO Yanfu,SUI Li,LI Yueru.Progress on brain fatigue detection based on electroencephalogram[J].Chinese Journal of Medical Physics,2019,36(5):1312.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.013]
[8]刘亚,伍倚明,李承炜,等.基于ADS1299的穿戴式脑电检测装置设计[J].中国医学物理学杂志,2019,36(11):1317.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.014]
 LIU Ya,WU Yiming,LI Chengwei,et al.Design of a wearable EEG detection device based on ADS1299[J].Chinese Journal of Medical Physics,2019,36(5):1317.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.014]
[9]李嘉慧,刘建鹏,潘智林,等.精神分裂症患者认知功能损伤的神经生物学基础和电生理表现[J].中国医学物理学杂志,2020,37(1):115.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.021]
 LI Jiahui,LIU Jianpeng,et al.Neurobiological bases and electrophysiological manifestations of cognitive impairments in patients with schizophrenia[J].Chinese Journal of Medical Physics,2020,37(5):115.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.021]
[10]王耀辉,吕喆,张重阳,等.基于脑电信号样本熵的急性脑梗死患者溶栓效果评价[J].中国医学物理学杂志,2022,39(1):81.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.014]
 WANG Yaohui,L?Zhe,ZHANG Chongyang,et al.Evaluation of thrombolysis in patients with acute cerebral infarction based on EEG sample entropy[J].Chinese Journal of Medical Physics,2022,39(5):81.[doi:DOI:10.3969/j.issn.1005-202X.2022.01.014]
[11]陈明武,郑诗豪,杨波,等.CTP灌注参数联合脑电图对aSAH继发癫痫及预后的价值分析[J].中国医学物理学杂志,2023,40(2):182.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.009]
 CHEN Mingwu,ZHENG Shihao,YANG Bo,et al.Predictive value of CTP parameters combined with electroencephalogram for epilepsy secondary to aSAH and the prognosis[J].Chinese Journal of Medical Physics,2023,40(5):182.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.009]
[12]高晨洋,吴凯,李文豪,等.EEG-fNIRS技术在神经精神疾病研究中的应用进展[J].中国医学物理学杂志,2024,41(3):348.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.013]
 GAO Chenyang,WU Kai,,et al.Advances in application of EEG-fNIRS technology in researches on neuropsychiatric disorders[J].Chinese Journal of Medical Physics,2024,41(5):348.[doi:DOI:10.3969/j.issn.1005-202X.2024.03.013]

备注/Memo

备注/Memo:
【收稿日期】2022-12-10 【基金项目】国家自然科学青年基金项目(41706198);青岛市自主创新重大专项子课题(21-1-2-1hy) 【作者简介】于永强,硕士研究生,研究方向:机器学习和深度学习,E-mail: yongqiang169@foxmail.com 【通信作者】隋毅,博士,副教授,研究方向:大数据分析、机器学习,E-mail: suiyi@qdu.edu.cn
更新日期/Last Update: 2023-05-26