相似文献/References:
[1]张和华,吕 洋,苌飞霸,等.基于支持向量机的胸阻抗与胸外按压深度预测模型构建[J].中国医学物理学杂志,2015,32(03):343.[doi:10.3969/j.issn.1005-202X.2015.03.009]
[2]张泽文,张才擎,张成琪.基于高清晰度CT图像的孤立性肺结节计算机辅助诊断系统[J].中国医学物理学杂志,2015,32(05):669.[doi:doi:10.3969/j.issn.1005-202X.2015.05.012]
[3]赖胜圣,刘虔铖,余丽玲,等.基于SFS-SVM的乳腺癌预测模型的构建[J].中国医学物理学杂志,2019,36(7):826.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.015]
LAI Shengsheng,LIU Qiancheng,YU Liling,et al.Construction of breast cancer prediction model based on SFS-SVM[J].Chinese Journal of Medical Physics,2019,36(2):826.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.015]
[4]丘敏敏,邓永锦,钟嘉健,等.胸部食管癌共面调强放射治疗肺受量预测模型研究[J].中国医学物理学杂志,2020,37(10):1248.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.007]
QIU Minmin,DENG Yongjin,ZHONG Jiajian,et al.Lung dose prediction model in coplanar intensity-modulated radiotherapy for thoracic esophageal carcinoma[J].Chinese Journal of Medical Physics,2020,37(2):1248.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.007]
[5]刘啸峰,黄述斌,胡磊.CT动态增强扫描中时间密度曲线及特征参数值对孤立性肺结节的诊断价值[J].中国医学物理学杂志,2021,38(6):713.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.010]
LIU Xiaofeng,HUANG Shubin,HU Lei.Diagnostic value of time-density curve and characteristic parameters in dynamic contrast-enhanced CT scan for solitary pulmonary nodules[J].Chinese Journal of Medical Physics,2021,38(2):713.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.010]
[6]王明理,顾慧宽,胡江,等.DVH预测模型在VMAT计划培训中的应用[J].中国医学物理学杂志,2021,38(8):925.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.001]
WANG Mingli,GU Huikuan,HU Jiang,et al.Application of DVH prediction model in VMAT planning training[J].Chinese Journal of Medical Physics,2021,38(2):925.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.001]
[7]卢孔尧,黄钢,左艳.非小细胞肺癌淋巴结转移预测模型研究[J].中国医学物理学杂志,2022,39(2):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
LU Kongyao,HUANG Gang,ZUO Yan.Prediction model for lymph node metastasis in non-small cell lung cancer[J].Chinese Journal of Medical Physics,2022,39(2):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
[8]李怡琳,苏学峰,李慧,等.基于多源数据融合的流行病组合预测方法[J].中国医学物理学杂志,2024,41(2):258.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.021]
LI Yilin,SU Xuefeng,LI Hui,et al.Epidemic prediction method based on multi-source data fusion[J].Chinese Journal of Medical Physics,2024,41(2):258.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.021]
[9]龚旻炜,石佳琪,吴健.机器学习方法预测人群中抑郁症发病风险的研究进展[J].中国医学物理学杂志,2024,41(6):776.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.017]
GONG Minwei,,et al.Review on machine learning methods in predicting the risk of depression[J].Chinese Journal of Medical Physics,2024,41(2):776.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.017]