[1]张蜜,谈炎欢,钱芯,等.基于高分辨率CT扫描的孤立性肺结节高危预测模型的建立与验证[J].中国医学物理学杂志,2023,40(2):190-195.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.011]
 ZHANG Mi,TAN Yanhuan,QIAN Xin,et al.Establishment and validation of a prediction model for high-risk patients with solitary pulmonary nodules based on high-resolution CT scans[J].Chinese Journal of Medical Physics,2023,40(2):190-195.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.011]
点击复制

基于高分辨率CT扫描的孤立性肺结节高危预测模型的建立与验证()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第2期
页码:
190-195
栏目:
医学影像物理
出版日期:
2023-03-03

文章信息/Info

Title:
Establishment and validation of a prediction model for high-risk patients with solitary pulmonary nodules based on high-resolution CT scans
文章编号:
1005-202X(2023)02-0190-06
作者:
张蜜1谈炎欢1钱芯1吴志超2耿悦1邵宇1俞阳1李俊晨1
1.南京中医药大学常熟附属医院放射科, 江苏 常熟 215500; 2.南京中医药大学常熟附属医院胸外科, 江苏 常熟 215500
Author(s):
ZHANG Mi1 TAN Yanhuan1 QIAN Xin1 WU Zhichao2 GENG Yue1 SHAO Yu1 YU Yang1 LI Junchen1
1. Department of Radiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China 2. Department of Thoracic Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China
关键词:
预测模型孤立性肺结节CT列线图ROC曲线
Keywords:
Keywords: prediction model solitary pulmonary nodule CT nomogram receiver operating characteristic curve
分类号:
R734.2;R814.42
DOI:
DOI:10.3969/j.issn.1005-202X.2023.02.011
文献标志码:
A
摘要:
目的:筛选孤立性肺结节(SPN)高危病变的高分辨率CT危险特征因素,建立SPN高危预测模型,并对模型进行内部验证。方法:回顾性分析317例SPN患者的胸部影像学征象,采用随机分组的方法按约6:4比例分为训练集和验证集,通过单因素及多因素分析Logistic逐步回归法筛选出与高危SPN相关的独立危险因素,建立预测模型;通过验证集数据对建立的模型进行验证,绘制受试者工作特征曲线(ROC),评估模型预测价值。结果:单因素分析显示影像学征象位置、结节最大径、CT值、毛刺征、空泡征、分叶征与SPN是否高危存在统计学差异(P<0.05),边界与SPN是否高危无统计学差异(P>0.05)。多因素分析显示位置、结节最大径、CT值、分叶征4个因素是SPN高危的独立预测因子(P<0.05)。通过训练集构建的预测模型为P=ex/(1+ex),其中e为自然对数,x=-7.767+(2.821×位置)+(0.391×结节最大径)-(0.003×CT值)+(3.576×分叶)。训练集受试者工作特征曲线下面积(AUC)为0.932,95%CI为0.892~0.973,最佳截点值为T=0.208,敏感度为91.7%,特异性为85.6%。验证集AUC为0.911,95%CI为0.847~0.975,最佳截点值为T=0.268,敏感度为78.8%,特异性为93.1%。结论:位置、结节最大径、CT值、分叶征是判断SPN高危的独立影响因素,其建立的数学预测模型准确性较高,可在临床进行推广应用。
Abstract:
Objective To screen out the high-resolution CT sign of high-risk lesions of solitary pulmonary nodules (SPN) for establishing a prediction model for high-risk SPN, and to conduct an internal validation of the model. Methods The chest imaging signs of 317 patients with SPN were retrospectively analyzed, and the patients were randomly divided into training set and validation set in a ratio of about 6:4. The independent risk factors associated with high-risk SPN were screened out using univariate and multivariate Logistic stepwise regressions, and a prediction model was established. The established model is verified using validation set, and the receiver operating characteristic (ROC) curve is drawn to evaluate the predictive value of the model. Results Univariate analysis showed that there were significant differences between high- and low-risk SPN in the following imaging signs: location, maximum diameter, CT value, spicule sign, vacuole sign, lobulation sign (P<0.05), and that the proportion of clear or unclear boundary in high-risk SPN group was similar to that in low-risk SPN group (P>0.05). Multivariate analysis showed that 4 factors including location, maximum diameter, CT value and lobulation sign were independent predictors for high-risk SPN (P<0.05). The prediction model constructed based on training set was as follow: P=ex/(1+ex), where the e is the natural logarithm, x=-7.767+(2.821×location)+(0.391×maximum diameter)-(0.003×CT value)+(3.576×lobulation). The area under the ROC curve (AUC), 95%CI, the optimal cutoff value, sensitivity, and specificity were 0.932, 0.892-0.973, 0.208, 91.7%, and 85.6% in training set, and 0.911, 0.847-0.975, 0.268, 78.8%, and 93.1% in validation set. Conclusion Location, maximum diameter, CT value, and lobulation sign are independent influencing factors for high-risk SPN, and the mathematical prediction model established by these independent influencing factors has high accuracy and is worth to be popularized in clinical practice.

相似文献/References:

[1]张和华,吕 洋,苌飞霸,等.基于支持向量机的胸阻抗与胸外按压深度预测模型构建[J].中国医学物理学杂志,2015,32(03):343.[doi:10.3969/j.issn.1005-202X.2015.03.009]
[2]张泽文,张才擎,张成琪.基于高清晰度CT图像的孤立性肺结节计算机辅助诊断系统[J].中国医学物理学杂志,2015,32(05):669.[doi:doi:10.3969/j.issn.1005-202X.2015.05.012]
[3]赖胜圣,刘虔铖,余丽玲,等.基于SFS-SVM的乳腺癌预测模型的构建[J].中国医学物理学杂志,2019,36(7):826.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.015]
 LAI Shengsheng,LIU Qiancheng,YU Liling,et al.Construction of breast cancer prediction model based on SFS-SVM[J].Chinese Journal of Medical Physics,2019,36(2):826.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.015]
[4]丘敏敏,邓永锦,钟嘉健,等.胸部食管癌共面调强放射治疗肺受量预测模型研究[J].中国医学物理学杂志,2020,37(10):1248.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.007]
 QIU Minmin,DENG Yongjin,ZHONG Jiajian,et al.Lung dose prediction model in coplanar intensity-modulated radiotherapy for thoracic esophageal carcinoma[J].Chinese Journal of Medical Physics,2020,37(2):1248.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.007]
[5]刘啸峰,黄述斌,胡磊.CT动态增强扫描中时间密度曲线及特征参数值对孤立性肺结节的诊断价值[J].中国医学物理学杂志,2021,38(6):713.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.010]
 LIU Xiaofeng,HUANG Shubin,HU Lei.Diagnostic value of time-density curve and characteristic parameters in dynamic contrast-enhanced CT scan for solitary pulmonary nodules[J].Chinese Journal of Medical Physics,2021,38(2):713.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.010]
[6]王明理,顾慧宽,胡江,等.DVH预测模型在VMAT计划培训中的应用[J].中国医学物理学杂志,2021,38(8):925.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.001]
 WANG Mingli,GU Huikuan,HU Jiang,et al.Application of DVH prediction model in VMAT planning training[J].Chinese Journal of Medical Physics,2021,38(2):925.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.001]
[7]卢孔尧,黄钢,左艳.非小细胞肺癌淋巴结转移预测模型研究[J].中国医学物理学杂志,2022,39(2):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
 LU Kongyao,HUANG Gang,ZUO Yan.Prediction model for lymph node metastasis in non-small cell lung cancer[J].Chinese Journal of Medical Physics,2022,39(2):182.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.009]
[8]李怡琳,苏学峰,李慧,等.基于多源数据融合的流行病组合预测方法[J].中国医学物理学杂志,2024,41(2):258.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.021]
 LI Yilin,SU Xuefeng,LI Hui,et al.Epidemic prediction method based on multi-source data fusion[J].Chinese Journal of Medical Physics,2024,41(2):258.[doi:DOI:10.3969/j.issn.1005-202X.2024.02.021]
[9]龚旻炜,石佳琪,吴健.机器学习方法预测人群中抑郁症发病风险的研究进展[J].中国医学物理学杂志,2024,41(6):776.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.017]
 GONG Minwei,,et al.Review on machine learning methods in predicting the risk of depression[J].Chinese Journal of Medical Physics,2024,41(2):776.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.017]

备注/Memo

备注/Memo:
【收稿日期】2022-09-19 【基金项目】常熟市卫生和计划生育委员会科技计划资助性青年项目(cswsq201804) 【作者简介】张蜜,硕士,主治医师,主要研究方向:乳腺放射,E-mail: 706577821@qq.com
更新日期/Last Update: 2023-03-03