[1]曹莉凌,蒋坷宏,曹守启,等.基于深度学习的甲状腺癌病理图像分级方法[J].中国医学物理学杂志,2023,40(5):580-588.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.010]
 CAO Liling,JIANG Kehong,CAO Shouqi,et al.Automatic grading of pathological images of thyroid cancer based on deep learning[J].Chinese Journal of Medical Physics,2023,40(5):580-588.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.010]
点击复制

基于深度学习的甲状腺癌病理图像分级方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第5期
页码:
580-588
栏目:
医学影像物理
出版日期:
2023-05-26

文章信息/Info

Title:
Automatic grading of pathological images of thyroid cancer based on deep learning
文章编号:
1005-202X(2023)05-0580-09
作者:
曹莉凌1蒋坷宏1曹守启1蒋伏松2
1.上海海洋大学工程学院, 上海 201306; 2.上海交通大学医学院附属第六人民医院内分泌代谢科, 上海 200233
Author(s):
CAO Liling1 JIANG Kehong1 CAO Shouqi1 JIANG Fusong2
1. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China 2. Department of Endocrinology and Metabolism, Shanghai Sixth Peoples Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
关键词:
深度学习甲状腺癌卷积神经网络全切片数字化图像图像分级
Keywords:
Keywords: deep learning thyroid cancer convolutional neural network whole slide image image grading
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2023.05.010
文献标志码:
A
摘要:
针对日益增长的甲状腺癌早期诊断的需求,基于深度学习方法,在EfficientNet网络的基础上结合CA注意力机制,进行甲状腺癌病理图像自动分级方法研究。实验结果显示,CA-EfficientNet网络模型的精确率达到96.6%,证明了基于CA-EfficientNet网络的甲状腺癌病理图像自动分级算法的先进性,基于该算法实现的自动辅助诊断系统具有实际应用性,可有效降低病理医生工作负担,并降低因疲劳等主观因素造成的人工诊断误诊率。
Abstract:
Abstract: In response to the increasing demand for early diagnosis of thyroid cancer, a deep learning based method is proposed for the automatic grading of the pathological images of thyroid cancer through EfficientNet combined with CA-Net. The experimental results show that the accuracy of CA-EfficientNet model is up to 96.6%, which proves the algorithm superiority in the automatic grading of the pathological images of thyroid cancer. The automatic auxiliary diagnosis system implemented based on the proposed algorithm is applicable in practice for it can effectively reduce the workload of pathologists and reduce the rate of misdiagnosis caused by subjective factors such as fatigue.

相似文献/References:

[1]林 洁.彩色多普勒超声诊断甲状腺癌的临床价值[J].中国医学物理学杂志,2015,32(03):440.[doi:10.3969/j.issn.1005-202X.2015.03.031]
[2]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(5):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(5):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(5):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(5):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(5):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(5):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[8]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(5):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[9]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(5):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[10]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(5):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]

备注/Memo

备注/Memo:
【收稿日期】2022-11-12 【基金项目】浦东新区科技发展基金(PKJ2019-Y03) 【作者简介】曹莉凌,博士,研究生导师,研究方向:智能检测与控制技术、无线通信安全技术,E-mail: llcao@shou.edu.cn 【通信作者】蒋伏松,博士,主任医师,研究生导师,研究方向:糖尿病并发症的人工智能预测、图像识别技术在糖尿病足病和甲状腺眼病及甲状腺结节的应用,E-mail: hajfs@126.com
更新日期/Last Update: 2023-05-26