相似文献/References:
[1]张艺宝,吴昊,李莎,等.临床前验证与几何对比分析基于图谱库的危及器官自动勾画[J].中国医学物理学杂志,2015,32(06):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]
[J].Chinese Journal of Medical Physics,2015,32(3):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]
[2]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[J].Chinese Journal of Medical Physics,2017,34(3):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(3):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(3):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(3):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[8]王金媛,徐寿平,杨微,等.算法和匹配数目对宫颈癌危及器官自动勾画的影响[J].中国医学物理学杂志,2019,36(11):1243.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.001]
WANG Jinyuan,XU Shouping,YANG Wei,et al.Effects of algorithm and matching number on the auto-segmentation of organs-at-risk in patients with cervical cancer[J].Chinese Journal of Medical Physics,2019,36(3):1243.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.001]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(3):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]王沛沛,李金凯,李彩虹,等.基于人工智能技术的危及器官自动勾画在胸部肿瘤中的应用[J].中国医学物理学杂志,2019,36(11):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
WANG Peipei,LI Jinkai,LI Caihong,et al.Application of automatic organs-at-risk segmentation based on artificial intelligence technology in thoracic tumors[J].Chinese Journal of Medical Physics,2019,36(3):1346.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.019]
[11]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(3):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[12]汪志,常艳奎,吴昊天,等.基于深度学习的危及器官自动勾画软件系统DeepViewer在放疗中的应用及评估[J].中国医学物理学杂志,2020,37(8):1071.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.025]
WANG Zhi,CHANG Yankui,et al.Application and evaluation of deep learning-based DeepViewer system for automatic segmentation of organs-at-risk[J].Chinese Journal of Medical Physics,2020,37(3):1071.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.025]
[13]时飞跃,王敏,赵紫婷,等.基于深度学习的rtStation软件自动勾画乳腺癌术后患者心脏结构的应用分析[J].中国医学物理学杂志,2021,38(6):661.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.001]
SHI Feiyue,WANG Min,et al.Application analysis of deep learning-based rtStation software in automatic delineation of the heart in patients after surgery for breast cancer[J].Chinese Journal of Medical Physics,2021,38(3):661.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.001]
[14]宋威,鹿红,马珺,等.金属伪影对鼻咽癌放疗危及器官自动勾画的影响[J].中国医学物理学杂志,2021,38(10):1185.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.001]
SONG Wei,LU Hong,MA Jun,et al.Effects of metal artifacts on automatic segmentation of organs-at-risk in patients receiving radiotherapy for nasopharyngeal carcinoma[J].Chinese Journal of Medical Physics,2021,38(3):1185.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.001]
[15]张瑞萍,刘应龙,张文静,等.基于人工智能的多模态影像辅助海马体自动勾画研究[J].中国医学物理学杂志,2022,39(3):390.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.021]
ZHANG Ruiping,LIU Yinglong,ZHANG Wenjing,et al.Auto-segmentation of the hippocampus in multimodal image using artificial intelligence[J].Chinese Journal of Medical Physics,2022,39(3):390.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.021]
[16]张丹凤,蒋俊,吴昊天,等.基于nnU-Net的宫颈癌近距离治疗中高危临床靶区及危及器官的自动勾画[J].中国医学物理学杂志,2023,40(12):1463.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.003]
ZHANG Danfeng,JIANG Jun,WU Haotian,et al.Auto-segmentation of high-risk clinical target volume and organs-at-risk for brachytherapy of cervical cancer based on nnUNet[J].Chinese Journal of Medical Physics,2023,40(3):1463.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.003]
[17]胡兴刚,王娴,张扬,等.基于深度学习算法的自动勾画系统在头颈部危及器官勾画精度的研究[J].中国医学物理学杂志,2024,41(5):548.[doi:DOI:10.3969/j.issn.1005-202X.2024.05.004]
HU Xinggang,WANG Xian,ZHANG Yang,et al.Deep learning based software solutions for automatic segmentation of head and neck organs at risk[J].Chinese Journal of Medical Physics,2024,41(3):548.[doi:DOI:10.3969/j.issn.1005-202X.2024.05.004]
[18]王云祥,杨碧凝,刘宇翔,等.利用基于图像配准的深度学习方法提高磁共振引导前列腺癌放疗自动勾画精度[J].中国医学物理学杂志,2024,41(6):667.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.002]
WANG Yunxiang,YANG Bining,LIU Yuxiang,et al.Improving auto-segmentation accuracy for online magnetic resonance imaging-guided prostate radiotherapy by registration-based deep learning method[J].Chinese Journal of Medical Physics,2024,41(3):667.[doi:DOI:10.3969/j.issn.1005-202X.2024.06.002]