[1]张建华,王豪,李克祥,等.基于KPCA的膝关节多模式连续运动估计[J].中国医学物理学杂志,2023,40(6):742-749.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.012]
 ZHANG Jianhua,WANG Hao,LI Kexiang,et al.KPCA-based continuous motion estimation of knee joint in multiple motion modes[J].Chinese Journal of Medical Physics,2023,40(6):742-749.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.012]
点击复制

基于KPCA的膝关节多模式连续运动估计()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第6期
页码:
742-749
栏目:
医学信号处理与医学仪器
出版日期:
2023-06-27

文章信息/Info

Title:
KPCA-based continuous motion estimation of knee joint in multiple motion modes
文章编号:
1005-202X(2023)06-0742-08
作者:
张建华1王豪1李克祥12王唱12
1.河北工业大学机械工程学院, 天津 300401; 2.河北工业大学电工装备可靠性与智能化国家重点实验室, 天津 300401
Author(s):
ZHANG Jianhua1 WANG Hao1 LI Kexiang1 2 WANG Chang1 2
1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China 2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
关键词:
表面肌电信号核主成分分析时域特征连续运动估计
Keywords:
Keywords: surface electromyography signal kernel principal component analysis time domain feature continuous motion estimation
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2023.06.012
文献标志码:
A
摘要:
为了实现不同运动模式下膝关节连续运动的有效估计,提出一种基于核主成分分析(KPCA)的下肢膝关节连续运动估计方法。首先,融合多维表面肌电信号时域特征获取不同运动模式下较为全面的运动信息;其次,采用KPCA方法进行肌电特征降维,获取与该类运动模式最为相关的主成分向量,并基于反向传播神经网络实现不同运动模式下膝关节连续运动的有效估计;最后,对5个实验对象的4种运动模式进行实验验证。结果表明该方法不仅可有效估计不同运动模式下膝关节连续运动角度,相对于PCA算法估计精度也有明显提高。
Abstract:
Abstract: A kernel principal component analysis (KPCA) based method is proposed for the effective estimation of multi-mode continuous motion of knee joint. The time domain features of multi-dimensional surface electromyography signal are fused to obtain the comprehensive motion information in different motion modes. Then, KPCA method is used to reduce the dimensionality of EMG features and obtain the most relevant principal component vectors, and the effective estimation of multi-mode continuous motion of knee joint is realized through the combination with back propagation neural network. Experimental verification is carried out on 4 motion modes of 5 subjects. The results show that the proposed method can not only effectively estimate the multi-mode continuous motion angles of knee joint, but also significantly improve the estimation accuracy as compared with PCA algorithm.

相似文献/References:

[1]吴志敏,杜佳乐,乔晓艳.经穴位电刺激下的表面肌电信号特征分析[J].中国医学物理学杂志,2015,32(01):77.[doi:10.3969/j.issn.1005-202X.2015.01.019]
[2]陈文敏,肖玲玲,李慧慧,等. 单侧痛腰椎间盘突出症的表面肌电信号特征[J].中国医学物理学杂志,2017,34(10):1022.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.011]
 [J].Chinese Journal of Medical Physics,2017,34(6):1022.[doi:DOI:10.3969/j.issn.1005-202X.2017.10.011]
[3]周文,王瑜,肖红兵,等. 基于KPCA算法的阿尔茨海默症辅助诊断[J].中国医学物理学杂志,2018,35(4):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
 ZHOU Wen,WANG Yu,XIAO Hongbing,et al. Assisted diagnosis of Alzheimer’s disease based on KPCA algorithm[J].Chinese Journal of Medical Physics,2018,35(6):404.[doi:DOI:10.3969/j.issn.1005-202X.2018.04.007]
[4]李长胜,王瑜,肖洪兵,等.KPCA和Adaboost算法在阿尔茨海默症功能磁共振影像分类中的应用[J].中国医学物理学杂志,2019,36(7):784.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.008]
 LI Changsheng,WANG Yu,XIAO Hongbing,et al.Application of KPCA and Adaboost algorithm in the classification of functional magneticresonance images of Alzheimer’s disease[J].Chinese Journal of Medical Physics,2019,36(6):784.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.008]
[5]雷建超,刘栋博,房玉,等.基于表面肌电信号的性别差异性手势识别[J].中国医学物理学杂志,2020,37(3):337.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.016]
 LEI Jianchao,LIU Dongbo,FANG Yu,et al.Recognition of hand gestures with gender differences based on surface electromyographic signals[J].Chinese Journal of Medical Physics,2020,37(6):337.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.016]
[6]刘若汐,饶家声,魏瑞晗,等.恒河猴表面肌电信号小波去噪的复合评价指标[J].中国医学物理学杂志,2020,37(9):1169.[doi:10.3969/j.issn.1005-202X.2020.09.017]
 LIU Ruoxi,RAO Jiasheng,WEI Ruihan,et al.A composite evaluation indicator of wavelet denoising in surface electromyography of rhesusmonkey[J].Chinese Journal of Medical Physics,2020,37(6):1169.[doi:10.3969/j.issn.1005-202X.2020.09.017]
[7]包其扬,王军霞,岳小力.基于子带频谱墒算法检测表面肌电信号肌肉疲劳性[J].中国医学物理学杂志,2020,37(10):1302.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.015]
 BAO Qiyang,WANG Junxia,YUE Xiaoli.Detection of muscle fatigue based on surface electromyography signals segmented by subband spectral entropy algorithm[J].Chinese Journal of Medical Physics,2020,37(6):1302.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.015]
[8]冯凯,董秀成,刘栋博.基于经验模态分解-小波包变换的表面肌电信号手势识别[J].中国医学物理学杂志,2021,38(4):461.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.013]
 FENG Kai,DONG Xiucheng,LIU Dongbo.Empirical mode decomposition and wavelet packet transform applied to surface EMG signal for hand gesture recognition[J].Chinese Journal of Medical Physics,2021,38(6):461.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.013]
[9]周明娟,王语园,王田戈,等.针对微弱表面肌电信号的采集电路设计[J].中国医学物理学杂志,2021,38(5):625.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.019]
 ZHOU Mingjuan,WANG Yuyuan,WANG Tiange,et al.Design of acquisition circuit for weak surface electromyography signals[J].Chinese Journal of Medical Physics,2021,38(6):625.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.019]
[10]张夏丰,阚秀,曹乐,等.基于肌电信号与肌肉形变信号的手语识别[J].中国医学物理学杂志,2021,38(11):1392.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.014]
 ZHANG Xiafeng,KAN Xiu,CAO Le,et al.Sign language recognition based on electromyogram signal and muscle deformation signal[J].Chinese Journal of Medical Physics,2021,38(6):1392.[doi:DOI:10.3969/j.issn.1005-202X.2021.11.014]

备注/Memo

备注/Memo:
【收稿日期】2023-01-04 【基金项目】河北省自然科学基金(F20202051);河北省博士后科研项目(B2022003016);省部共建电工装备可靠性与智能化国家重点实验室人才培育项目(EERIPD2021011);天津市杰出青年科学基金(19JCJQJC61600) 【作者简介】张建华,博士,教授,研究方向:康复机器人、智能机器人技术、模式识别,E-mail: jhzhang@hebut.edu.cn 【通信作者】李克祥,博士,讲师,研究方向:外骨骼机器人、人体意图识别、人机交互,E-mail: kexiang_lee@163.com
更新日期/Last Update: 2023-06-28