[1]卢昱,彭昭,裴曦,等.基于剂量预测和自动勾画技术的PET/CT器官内照射剂量率快速评估方法[J].中国医学物理学杂志,2023,40(2):149-156.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.004]
 LU Yu,PENG Zhao,PEI Xi,et al.Fast estimation of internal irradiation dose rate in PET/CT imaging using deep learning-based dose prediction combined with auto-segmentation technique[J].Chinese Journal of Medical Physics,2023,40(2):149-156.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.004]
点击复制

基于剂量预测和自动勾画技术的PET/CT器官内照射剂量率快速评估方法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第2期
页码:
149-156
栏目:
医学放射物理
出版日期:
2023-03-03

文章信息/Info

Title:
Fast estimation of internal irradiation dose rate in PET/CT imaging using deep learning-based dose prediction combined with auto-segmentation technique
文章编号:
1005-202X(2023)02-0149-08
作者:
卢昱1彭昭1裴曦1倪明2谢强2汪世存2徐榭13陈志1
1.中国科学技术大学核科学技术学院, 安徽 合肥 230026; 2.中国科学技术大学附属第一医院核医学科, 安徽 合肥 230001; 3.中国科学技术大学附属第一医院放疗科, 安徽 合肥 230001
Author(s):
LU Yu1 PENG Zhao1 PEI Xi1 NI Ming2 XIE Qiang2 WANG Shicun2 XU Xie13 CHEN Zhi1
1. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China 2. Department of Nuclear Medicine, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China 3. Department of Radiation Oncology, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
关键词:
正电子发射断层成像深度学习内照射剂量自动勾画技术
Keywords:
Keywords: positron emission tomography deep learning internal irradiation dose auto-segmentation technique
分类号:
R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2023.02.004
文献标志码:
A
摘要:
目的:实现一种基于深度学习的剂量预测和自动勾画技术的正电子发射断层成像(PET)/CT检查器官内照射剂量率的快速评估方法。方法:首先基于患者特定时刻的PET/CT图像,使用蒙特卡罗程序GATE进行内照射剂量率计算,获得每个患者的剂量率分布图。随后,基于U-Net构建深度神经网络,将患者的CT和PET图像作为输入,GATE计算的剂量率图作为金标准进行训练。训练后的深度学习模型能够根据患者的CT和PET图像预测对应的剂量率分布。同时,使用勾画软件DeepViewer对患者CT图像中的器官和组织进行自动勾画,结合预测得到的剂量率分布结果计算相应器官和组织的吸收剂量率。使用50名患者的PET/CT数据,其中10份用于测试,其余40份进行4折交叉训练,每次使用30份用于训练,10份用于验证。将测试集结果与GATE和GPU蒙特卡罗工具ARCHER-NM进行对比。结果:在自动勾画软件DeepViewer勾画的24个器官中,绝大部分器官的深度学习预测剂量率与GATE计算结果偏差在±10%以内。其中大脑、心脏、肝脏、左肺、右肺的平均偏差分别为3.3%、1.1%、1.0%、-1.1%、0.0%,与GATE具有较好的一致性。使用GATE程序进行每名患者的内照射剂量率计算平均用时8.91 h,而使用深度神经网络模型进行内照射剂量率预测平均每名患者用时15.1 s,平均加速比达到2 120倍。和ARCHER-NM的对比表明,基于深度学习方法的剂量率预测具有速度优势,但在结果的可解释性方面还需要改善。结论:利用深度学习预测和自动勾画技术可以从PET/CT图像快速得到剂量率分布,有望作为一种PET/CT内照射剂量率快速评估方法,为临床核医学快速、实时地计算人体内照射吸收剂量提供一种新的解决方案。
Abstract:
Abstract: Objective To realize the fast estimation of internal irradiation dose rate in PET/CT imaging using the combination of deep learning-based dose prediction and auto-segmentation technique. Methods Based on the PET/CT images of the patients at a specific moment, Monte Carlo simulation software GATE was used to calculate the internal irradiation dose rate, and obtain the dose rate distribution map of each patient. The PET and CT image patches were used as inputs for the training of a deep neural network constructed based on U-Net network, while internal irradiation dose rate map calculated by Monte Carlo simulation software GATE was given as ground truth. The trained deep learning model could predict the dose rate map according to the PET/CT images. Meanwhile, the radiosensitive organs and tissues in the CT images were automatically segmented using DeepViewer. The absorbed dose rates of the corresponding organs and tissues were calculated based on organ segmentation results and the predicted dose rate distribution. The PET/CT images of 50 patients were used in the study. Ten of which were used as testing set, and the others were used for 4-fold cross-validation training, with 30 for training and 10 for validation in each fold. The predicted results were compared with the results obtained by GATE and ARCHER-NM (a GPU-accelerated Monte Carlo dose calculation module). Results For most of the 24 organs segmented by DeepViewer, the relative differences between predicted dose rate and GATE simulation results were within ±10%. Specifically, the average relative differences of brain, heart, liver, left and right lungs were 3.3%, 1.1%, 1.0%, -1.1% and 0.0%, respectively, indicating a good consistency between dose rate prediction and GATE simulation. For each patient, the deep learning-based prediction costs 15.1 s on average for the estimation of internal irradiation dose rate, while the GATE simulation costs 8.91 h. The calculation speed was increased by a factor of 2 120. The comparison between deep learning-based prediction and ARCHER-NM showed that the deep learning-based prediction had an advantage of execution time, while its interpretability needed further improvement. Conclusion The combination of deep learning-based dose prediction and auto-segmentation technique is expected to be a method for the rapid estimation of internal irradiation dose rate in PET/CT imaging, and provide a solution to calculate the real-time internal absorbed dose rapidly for the practices of clinical nuclear medicine.

相似文献/References:

[1]卢荣辉,陈宗哲,魏晓华,等.一种基于灰关联的PET重建图像评价方法[J].中国医学物理学杂志,2016,33(10):1051.[doi:10.3969/j.issn.1005-202X.2016.10.015]
 [J].Chinese Journal of Medical Physics,2016,33(2):1051.[doi:10.3969/j.issn.1005-202X.2016.10.015]
[2]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(2):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[3]靳珍怡,王远军,聂生东. 梯度域三维头部PETCT图像融合[J].中国医学物理学杂志,2017,34(3):246.[doi:10.3969/j.issn.1005-202X.2017.03.006]
 [J].Chinese Journal of Medical Physics,2017,34(2):246.[doi:10.3969/j.issn.1005-202X.2017.03.006]
[4]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(2):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[5]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(2):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[6]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(2):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[7]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(2):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[8]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(2):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(2):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(2):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]

备注/Memo

备注/Memo:
【收稿日期】2022-08-10 【基金项目】安徽省自然科学基金(2008085MA24) 【作者简介】卢昱,硕士研究生,研究方向:辐射防护及剂量学,E-mail: lycreal@mail.ustc.edu.cn 【通信作者】陈志,副教授,研究方向:辐射防护及剂量学,E-mail: zchen@ustc.edu.cn
更新日期/Last Update: 2023-03-03