[1]刘方,孙鹏,陈真诚.基于3DV-Net的肺结节检测分割算法[J].中国医学物理学杂志,2023,40(1):77-82.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.013]
 LIU Fang,SUN Peng,CHEN Zhencheng.Detection and segmentation of pulmonary nodules using improved 3DV-Net[J].Chinese Journal of Medical Physics,2023,40(1):77-82.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.013]
点击复制

基于3DV-Net的肺结节检测分割算法()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第1期
页码:
77-82
栏目:
医学影像物理
出版日期:
2023-01-07

文章信息/Info

Title:
Detection and segmentation of pulmonary nodules using improved 3DV-Net
文章编号:
1005-202X(2023)01-0077-06
作者:
刘方1孙鹏2陈真诚3
1.桂林电子科技大学生命与环境科学学院, 广西 桂林 541000; 2.桂林电子科技大学电子工程与自动化学院, 广西 桂林 541000;3.桂林电子科技大学生命与环境科学学院广西高校生物传感与仪器重点实验室, 广西 桂林 541000
Author(s):
LIU Fang1 SUN Peng2 CHEN Zhencheng3
1. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541000, China 2. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, China 3. Key Laboratory of Guangxi Colleges and Universities for Biosensors and Instruments, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541000, China
关键词:
肺部疾病CT图像肺结节分割3DV-Net深度学习
Keywords:
Keywords: pulmonary disease CT image pulmonary nodule segmentation 3DV-Net deep learning
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2023.01.013
文献标志码:
A
摘要:
目的:提出基于深度学习的肺结节识别与分割算法,以辅助医生进行肺部疾病检测。方法:针对LUNA16数据集数据量大以及肺结节种类大小多样性等特征,采用基于改进的深度神经网络3DV-Net实现多种肺结节的检测分割,然后使用ResNet对结节图像和非结节图像进行分类。对LUNA16数据集中的肺部CT图像进行图像去噪、插值采样等预处理,然后生成粗分割图像和Mask图像,再使用改进的3DV-Net模型对数据进行多次训练预测。网络层级越深,出现梯度消散、梯度爆炸等问题的概率越大,改进的3DV-Net使用残差连接来改善这一问题。结果:改进的3DV-Net的Dice相似系数和IoU分别达到88.29%和88.25%。结论:本文方法有助于肺结节的检测分割,在肺结节的辅助诊断方面有重要意义。 【关键词】肺部疾病;CT图像;肺结节分割;3DV-Net;深度学习
Abstract:
Abstract: Objective To propose a deep learning-based algorithm for the recognition and segmentation of pulmonary nodules, thereby assisting doctors in the diagnosis of pulmonary diseases. Methods In view of the large amount of data in LUNA16 data set and the diversity of types and sizes of pulmonary nodules, an improved deep neural network 3DV-Net was adopted to complete the detection and segmentation of various pulmonary nodules, and then ResNet was used to classify the nodule and non-nodule images. The lung CT images in LUNA16 data set were preprocessed by image denoising and interpolation sampling. After coarse segmentation images and mask images were generated, the improved 3DV-Net model was used to carry out multiple training and prediction. The improved 3DV-Net network adopted skip block to solve the problem that with the deeper network level, the probability of gradient dissipation, gradient explosion and other issues was greater. Results The Dice similarity coefficient and IoU of the improved 3DV-Net reached 88.29% and 88.25%, respectively. Conclusion The proposed method is helpful to the detection and segmentation of pulmonary nodules and is of great significance in the auxiliary diagnosis of pulmonary nodules.

相似文献/References:

[1]谷珊珊,张怀文,王运来.基于水平集稳健特征统计算法的脑肿瘤自动分割研究[J].中国医学物理学杂志,2016,33(1):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
 [J].Chinese Journal of Medical Physics,2016,33(1):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
[2]王净巍,岳士弘.人体肺癌组织电导率与CT图像灰度相关性[J].中国医学物理学杂志,2016,33(6):599.[doi:10.3969/j.issn.1005-202X.2016.06.013]
 [J].Chinese Journal of Medical Physics,2016,33(1):599.[doi:10.3969/j.issn.1005-202X.2016.06.013]
[3]牛军龙,秦现生,洪杰,等.基于CT图像重建人体膝关节3D骨骼优化模型[J].中国医学物理学杂志,2016,33(7):700.[doi:10.3969/j.issn.1005-202X.2016.07.012]
 [J].Chinese Journal of Medical Physics,2016,33(1):700.[doi:10.3969/j.issn.1005-202X.2016.07.012]
[4]邓金城,刘常春,莫珍丽,等. 基于Hessian矩阵及余弦定理的肝门静脉血管检测[J].中国医学物理学杂志,2017,34(5):462.[doi:DOI:10.3969/j.issn.1005-202X.2017.05.006]
[5]张文莉,吕晓琪,谷宇,等. 基于肺部CT图像中肺实质分割的研究进展[J].中国医学物理学杂志,2017,34(9):902.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.009]
 [J].Chinese Journal of Medical Physics,2017,34(1):902.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.009]
[6]唐思源,刘燕茹,杨敏,等.基于CT图像的肺结节检测与识别[J].中国医学物理学杂志,2019,36(7):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
 TANG Siyuan,LIU Yanru,YANG Min,et al.Detection and recognition of pulmonary nodules based on CT images[J].Chinese Journal of Medical Physics,2019,36(1):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
[7]高磊,段辉宏,周韡鼎,等. 基于CT影像的肺叶分割技术研究进展[J].中国医学物理学杂志,2019,36(10):1168.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.010]
 GAO Lei,DUAN Huihong,ZHOU Weiding,et al. Progress on CT image-based lung lobe segmentation techniques[J].Chinese Journal of Medical Physics,2019,36(1):1168.[doi:DOI:10.3969/j.issn.1005-202X.2019.10.010]
[8]徐艳,胡顺波,王基烽,等.一种基于Snake模型的脑部CT图像分割新算法[J].中国医学物理学杂志,2020,37(5):568.[doi:10.3969/j.issn.1005-202X.2020.05.007]
 XU Yan,HU Shunbo,et al.A New Segmentation Algorithm Based on Snake Model for Brain CT Image[J].Chinese Journal of Medical Physics,2020,37(1):568.[doi:10.3969/j.issn.1005-202X.2020.05.007]
[9]赵呈陆,方志军,高永彬,等.基于改进型V-net卷积神经网络的胃壁分割方法[J].中国医学物理学杂志,2021,38(10):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
 ZHAO Chenglu,FANG Zhijun,GAO Yongbin,et al.Gastric wall segmentation based on improved V-net convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(1):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
[10]唐智贤,王一淼,周靓怡,等.人工智能技术在肺部影像辅助诊断中的应用进展[J].中国医学物理学杂志,2022,39(5):655.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.022]
 TANG Zhixian,WANG Yimiao,ZHOU Liangyi,et al.Artificial intelligence technologies in lung imaging assisted diagnosis: a review[J].Chinese Journal of Medical Physics,2022,39(1):655.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.022]

备注/Memo

备注/Memo:
【收稿日期】2022-06-10 【基金项目】广西自然科学基金(2018GXNSFDA281044);广西创新驱动发展项目(2019AA12005);广西自动检测技术与仪器重点实验室项目(YQ20108) 【作者简介】刘方,硕士研究生,研究方向:医学与信息处理,E-mail: lf91239123@163.com 【通信作者】陈真诚,博士,教授,研究生导师,研究方向:生物医学传感与智能仪器,E-mail: chenzhcheng@163.com
更新日期/Last Update: 2023-01-07