[1]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441-1447.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
 LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(11):1441-1447.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
点击复制

基于深度学习结合解剖学注意力机制的肺结节良恶性分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第11期
页码:
1441-1447
栏目:
医学人工智能
出版日期:
2022-11-25

文章信息/Info

Title:
Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism
文章编号:
1005-202X(2022)11-1441-07
作者:
刘雲王一达张成秀杨光王成龙
华东师范大学物理与电子科学学院上海市磁共振重点实验室, 上海 200062
Author(s):
LIU Yun WANG Yida ZHANG Chengxiu YANG Guang WANG Chenglong
Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
关键词:
肺结节注意力机制CT图像深度学习
Keywords:
Keywords: pulmonary nodule attention mechanism CT image deep learning
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.11.019
文献标志码:
A
摘要:
肺结节作为肺癌的初期表现,及时的发现和准确的良恶性诊断对于疾病的治疗具有重要的意义。为了提高肺部CT图像中肺结节良恶性的诊断率,提出一种基于3D ResNet的卷积神经网络,并通过加入解剖学注意力模块有效地提高了肺结节良恶性的分类精度。此外,该方法通过自动分割以获取注意力机制所需的感兴趣区域,实现整个流程的全自动化。解剖学注意力的添加能更好地捕捉图像中的局部纹理信息,进一步提取对于肺结节良恶性诊断有用的特征。本文方法在LIDC-IDRI数据集上进行验证。实验结果表明与传统的3D ResNet及其他现有的方法相比,本文方法在分类精度上有显著的提高,在独立测试集上的最终分类的AUC达到0.973,准确率为0.940。由此可见,本文方法能在辅助医生对肺结节的诊断中起到重要作用。
Abstract:
Abstract: Pulmonary nodule is the initial sign of lung cancer, and the timely detection and accurate diagnosis of malignant and benign nodules have great significance for the treatment of diseases. In order to improve the diagnostic accuracy of benign and malignant pulmonary nodules in pulmonary CT images, a novel convolution neural network based on 3D ResNet is proposed, with anatomy-based attention mechanism for greatly improving the classification accuracy of pulmonary nodules. In addition, the region of interest required for the attention mechanism is obtained by automatic segmentation, thereby achieving the full automation of the whole process. The addition of anatomy-based attention mechanism can better capture local texture information in CT images and further extract useful features for diagnosing benign and malignant pulmonary nodules. The proposed method is verified in LIDC-IDRI data set. The results show that the proposed method greatly improves classification accuracy as compared with other existed methods and traditional 3D ResNet, achieving an area under the receiver operating characteristic curve (AUC) of 0.973 and an accuracy of 94.0% in the independent test set. The proposed method has the potential to assist doctors in the diagnosis of pulmonary nodules.

相似文献/References:

[1]唐思源,刘燕茹,杨敏,等.基于CT图像的肺结节检测与识别[J].中国医学物理学杂志,2019,36(7):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
 TANG Siyuan,LIU Yanru,YANG Min,et al.Detection and recognition of pulmonary nodules based on CT images[J].Chinese Journal of Medical Physics,2019,36(11):800.[doi:DOI:10.3969/j.issn.1005-202X.2019.07.011]
[2]张倩雯,陈明,秦玉芳,等.基于3D ResUnet网络的肺结节分割[J].中国医学物理学杂志,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
 ZHANG Qianwen,CHEN Ming,QIN Yufang,et al.Lung nodule segmentation based on 3D ResUnet network[J].Chinese Journal of Medical Physics,2019,36(11):1356.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.021]
[3]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
 JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(11):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
[4]曹宇,邢素霞,逄键梁,等.基于改进的VGG-16卷积神经网络的肺结节检测[J].中国医学物理学杂志,2020,37(7):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
 CAO Yu,XING Suxia,PANG Jianliang,et al.Detection of pulmonary nodules based on improved VGG-16 convolution neural network[J].Chinese Journal of Medical Physics,2020,37(11):940.[doi:DOI:10.3969/j.issn.1005-202X.2020.07.026]
[5]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
 WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(11):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[6]周意龙,卫子然,蔡清萍,等.基于卷积神经网络胃癌分割与T分期算法[J].中国医学物理学杂志,2022,39(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
 ZHOU Yilong,WEI Ziran,CAI Qingping,et al.Gastric cancer segmentation and T staging algorithm based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(11):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
[7]李启行,廖薇.基于注意力机制的生物医学文本分类模型[J].中国医学物理学杂志,2022,39(4):518.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.023]
 LI Qihang,LIAO Wei.Biomedical text classification model based on attention mechanism[J].Chinese Journal of Medical Physics,2022,39(11):518.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.023]
[8]江悦莹,施一萍,翁晓俊,等.融合Vnet和边缘特征的肺结节分割算法[J].中国医学物理学杂志,2022,39(6):705.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.009]
 JIANG Yueying,SHI Yiping,WENG Xiaojun,et al.Lung nodule segmentation algorithm integrating Vnet and boundary features[J].Chinese Journal of Medical Physics,2022,39(11):705.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.009]
[9]陈菁菁,李小霞,吕念祖.结合通道权重更新与密集残差金字塔空间注意力的皮肤病变分割方法[J].中国医学物理学杂志,2023,40(1):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
 CHEN Jingjing,LI Xiaoxia,L?Nianzu,et al.Skin lesion segmentation method combining channel weight update and dense residual pyramid spatial attention[J].Chinese Journal of Medical Physics,2023,40(11):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
[10]王振华,刘阳星,赵晓雨,等.结合上下文和注意力机制改进的视盘分割模型[J].中国医学物理学杂志,2023,40(1):47.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.008]
 WANG Zhenhua,LIU Yangxing,ZHAO Xiaoyu,et al.Optic disc segmentation model improved by contextual information and attention mechanism[J].Chinese Journal of Medical Physics,2023,40(11):47.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.008]
[11]刘涌涛,王宝珠,郭志涛.基于改进YOLOv7网络模型的肺结节检测算法[J].中国医学物理学杂志,2023,40(12):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]
 LIU Yongtao,WANG Baozhu,GUO Zhitao.Lung nodule detection algorithm using improved YOLOv7 network model[J].Chinese Journal of Medical Physics,2023,40(11):1509.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.009]

备注/Memo

备注/Memo:
【收稿日期】2022-07-13 【基金项目】中国博士后科学基金(2021M691038);上海市浦江人才计划(2020PJD016) 【作者简介】刘雲,硕士研究生,研究方向:医学图像处理,人工智能,E-mail: yliumri@gmail.com 【通信作者】王成龙,博士,助理研究员,研究方向:医学图像处理、人工智能,E-mail: clwang@phy.ecnu.edu.cn
更新日期/Last Update: 2022-11-25