[1]王京华,袁金丽,郭志涛,等.改进的YOLOv4算法在肺结核检测中的应用研究[J].中国医学物理学杂志,2023,40(1):113-119.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.019]
 WANG Jinghua,YUAN Jinli,GUO Zhitao,et al.Application of improved YOLOv4 algorithm in the detection of pulmonary tuberculosis[J].Chinese Journal of Medical Physics,2023,40(1):113-119.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.019]
点击复制

改进的YOLOv4算法在肺结核检测中的应用研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
40卷
期数:
2023年第1期
页码:
113-119
栏目:
医学人工智能
出版日期:
2023-01-07

文章信息/Info

Title:
Application of improved YOLOv4 algorithm in the detection of pulmonary tuberculosis
文章编号:
1005-202X(2023)01-0113-07
作者:
王京华袁金丽郭志涛王佳浩
河北工业大学电子信息工程学院, 天津 300401
Author(s):
WANG Jinghua YUAN Jinli GUO Zhitao WANG Jiahao
School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
关键词:
肺结核深度学习特征融合坐标注意力YOLOv4
Keywords:
Keywords: pulmonary tuberculosis deep learning feature fusion coordinate attention YOLOv4
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2023.01.019
文献标志码:
A
摘要:
针对CT影像中肺结核病灶复杂且尺度变化大造成检测精度低的问题,提出了一种改进特征融合方法的YOLOv4网络用于肺结核的检测。首先,采用尺度均衡的金字塔卷积来捕获不同尺度特征层之间的相互作用,并在此基础上以自适应空间特征融合的方式过滤掉不同尺度上的冲突信息,以进行特征的有效融合。其次,在低层特征上引入了坐标注意力以进一步提高小目标的检测精度。根据北京胸科医院提供的300例病患信息,搭建了一套规范的肺结核CT数据集,并在所构建的数据集上进行了实验。输入图片分辨率设定为512×512,与原始YOLOv4相比本文模型mAP提升了4.96%,且该指标优于现有主流肺结核检测算法,如Faster R_CNN、SSD、RetinaNet等。结果表明改进的YOLOv4算法能够有效解决检测目标尺度变化和小目标检测问题,提高检测精度。
Abstract:
Abstract: Aiming at the problem of low detection accuracy of pulmonary tuberculosis caused by the complex and large scale changes of tuberculosis lesions in CT images, YOLOv4 with an improved feature fusion block is proposed for the detection of pulmonary tuberculosis. Scale-equalizing pyramid convolution is used to capture the interaction between feature layers of different scales, and on this basis, the conflict information at different scales is filtered out by scale-equalizing adaptive spatial pyramid convolution, so as to achieve feature fusion effectively. In addition, coordinate attention is introduced on the low-level features for further improving the detection accuracy of small targets. A standardized tuberculosis CT data set is built using the information of 300 cases provided by Beijing Chest Hospital, and the experiments are conducted on the constructed data set. The input image resolution is set to 512×512. The results show that the proposed network increases mAP by 4.96% as compared with the original YOLOv4, and that it is better than the existing mainstream tuberculosis detection algorithms, such as Faster R_CNN, SSD, RetinaNet, etc. The improved YOLOv4 algorithm can effectively solve the problems of detection target scale changes and small target detection, thereby improving detection accuracy.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(1):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(1):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]安冬会,杨俊潇,屈亚林,等. 能谱CT在肺部磨玻璃结节良恶性鉴别中的应用价值[J].中国医学物理学杂志,2018,35(10):1160.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.009]
 AN Donghui,YANG Junxiao,QU Yalin,et al. Application value of energy spectrum CT in the differential diagnosis of benign and malignant pulmonary ground-glass nodule[J].Chinese Journal of Medical Physics,2018,35(1):1160.[doi:DOI:10.3969/j.issn.1005-202X.2018.10.009]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(1):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(1):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(1):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[8]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(1):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[9]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(1):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[10]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(1):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[11]谢浩杰,鲁明丽,张陈,等.基于深度学习的肺结核检测综述[J].中国医学物理学杂志,2024,41(7):918.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.020]
 XIE Haojie,LU Mingli,ZHANG Chen,et al.Review on tuberculosis detection using deep learning[J].Chinese Journal of Medical Physics,2024,41(1):918.[doi:DOI:10.3969/j.issn.1005-202X.2024.07.020]

备注/Memo

备注/Memo:
【收稿日期】2022-07-15 【基金项目】国家自然科学基金(61801164) 【作者简介】王京华,硕士研究生,研究方向:智能信息处理、计算机视觉、医学图像处理,E-mail: wjh_hebuter0676@163.com 【通信作者】袁金丽,博士,副教授,研究方向:机器学习、智能信息处理、医学图像处理,E-mail: 2005051@hebut.edu.cn
更新日期/Last Update: 2023-01-07