[1]顾国浩,龙英文,吉明明.U-Net改进及其在新冠肺炎图像分割的应用[J].中国医学物理学杂志,2022,39(8):1041-1048.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
 GU Guohao,LONG Yingwen,JI Mingming.Improved U-Net and its application in COVID-19 image segmentation[J].Chinese Journal of Medical Physics,2022,39(8):1041-1048.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.022]
点击复制

U-Net改进及其在新冠肺炎图像分割的应用()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第8期
页码:
1041-1048
栏目:
医学人工智能
出版日期:
2022-08-04

文章信息/Info

Title:
Improved U-Net and its application in COVID-19 image segmentation
文章编号:
1005-202X(2022)08-1041-08
作者:
顾国浩龙英文吉明明
上海工程技术大学电子电气工程学院, 上海 201620
Author(s):
GU Guohao LONG Yingwen JI Mingming
School of Electrical and Electronic Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
关键词:
U-Net新型冠状病毒肺炎图像分割循环残差自注意力机制
Keywords:
Keywords: U-Net corona virus disease 2019 image segmentation recurrent ResNet self-attention mechanism
分类号:
R318;TP391
DOI:
DOI:10.3969/j.issn.1005-202X.2022.08.022
文献标志码:
A
摘要:
CT成像已成为检测新型冠状病毒肺炎(COVID-19)最重要的步骤之一。针对手动分割患者胸部CT图像中毛玻璃混浊区域繁琐的问题提出了一种自注意力循环残差U型网络模型来实现COVID-19患者肺部CT图像的自动分割,辅助医生诊断。在U-Net模型的基础上引入了循环残差模块和自注意力机制来加强对特征信息的抓取从而提升分割精度。在公开数据集上的分割实验结果显示,该算法的Dice系数、敏感度和特异度分别达到了85.36%、76.64%和76.25%,与其他算法相比具有良好的分割效果。
Abstract:
Abstract: Computed tomography (CT) has become one of the most important steps in the detection of the corona virus disease 2019 (COVID-19). Aiming at the cumbersome problem of manually segmenting the ground-glass opacity area in the chest CT image, a U-shaped network model with recurrent ResNet and self-attention is proposed to realize the automatic segmentation in the lung CT images of COVID-19 patients and assist doctors in diagnosis. The improved U-Net with recurrent ResNet and self-attention is introduced to enhance the capture of feature information, thereby improving the accuracy of segmentation. The segmentation experiment on the public data set show that the Dice coefficient, sensitivity and specificity of the proposed algorithm reach 85.36%, 76.64% and 76.25%, respectively. Compared with other algorithms, the proposed algorithm has better segmentation performance.

相似文献/References:

[1]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(8):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[2]杨勇,吴慕禹,苗丽霞,等.高压氧辅助治疗新型冠状病毒肺炎的介入时机及其临床疗效[J].中国医学物理学杂志,2020,37(5):641.[doi:10.3969/j.issn.1005-202X.2020.05.021]
 YANG Yong,WU Muyu,MIAO Lixia,et al.Timing of intervention and therapeutic efficacy of adjuvant hyperbaric oxygen therapy againstCOVID-19[J].Chinese Journal of Medical Physics,2020,37(8):641.[doi:10.3969/j.issn.1005-202X.2020.05.021]
[3]刘思远,张丽军,刘雷.人工智能在抗击新型冠状病毒肺炎疫情中的应用[J].中国医学物理学杂志,2020,37(8):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]
 LIU Siyuan,ZHANG Lijun,LIU Lei.Application of artificial intelligence in fighting against COVID-19 pandemic[J].Chinese Journal of Medical Physics,2020,37(8):1076.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.026]
[4]常艳奎,彭昭,周解平,等.基于U-net的心脏自动勾画模型的临床应用及改进[J].中国医学物理学杂志,2020,37(10):1218.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.002]
 CHANG Yankui,PENG Zhao,ZHOU Jieping,et al.Clinical application and improvement of U-net-based model for automatic segmentation of the heart[J].Chinese Journal of Medical Physics,2020,37(8):1218.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.002]
[5]董国亚,宋立明,李雅芬,等.基于深度学习的跨模态医学图像转换[J].中国医学物理学杂志,2020,37(10):1335.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.021]
 DONG Guoya,SONG Liming,et al.Cross-modality medical image synthesis based on deep learning[J].Chinese Journal of Medical Physics,2020,37(8):1335.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.021]
[6]邓灵波,周雯,赵双全,等.人工智能辅助诊断系统在新型冠状病毒肺炎诊断中的初步应用[J].中国医学物理学杂志,2020,37(12):1604.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.025]
 DENG Lingbo,ZHOU Wen,ZHAO Shuangquan,et al.Preliminary application of AI diagnosis system in the diagnosis of the novel coronavirus infected pneumonia[J].Chinese Journal of Medical Physics,2020,37(8):1604.[doi:DOI:10.3969/j.issn.1005-202X.2020.12.025]
[7]董宇波,王蕊,赵慧娟,等.革兰氏染色细菌显微图像深度学习分类与计数[J].中国医学物理学杂志,2021,38(1):127.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.020]
 DONG Yubo,WANG Rui,ZHAO Huijuan,et al.Classification and counting of Gram-stained bacteria by deeply learning in micro-image[J].Chinese Journal of Medical Physics,2021,38(8):127.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.020]
[8]王雁南,周俊林,刘建莉,等.多排螺旋CT低剂量扫描高分辨率重建在新型冠状病毒肺炎筛查中的应用[J].中国医学物理学杂志,2021,38(4):456.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.012]
 WANG Yannan,,et al.Application of low-dose multidetector CT scan and high-resolution reconstruction in COVID-19 pneumonia screening[J].Chinese Journal of Medical Physics,2021,38(8):456.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.012]
[9]莫春梅,周金治,李雪,等.基于改进U-Net的肝脏分割方法[J].中国医学物理学杂志,2021,38(5):571.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.009]
 MO Chunmei,ZHOU Jinzhi,et al.Liver segmentation method based on improved U-Net[J].Chinese Journal of Medical Physics,2021,38(8):571.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.009]
[10]李雪,周金治,莫春梅,等.基于特征融合的U-Net肺自动分割方法[J].中国医学物理学杂志,2021,38(6):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]
 LI Xue,ZHOU Jinzhi,et al.U-Net automatic lung segmentation based on feature fusion[J].Chinese Journal of Medical Physics,2021,38(8):704.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.009]

备注/Memo

备注/Memo:
【收稿日期】2021-10-26 【基金项目】国家自然科学基金(61603241) 【作者简介】顾国浩,硕士研究生,研究方向:人工智能,E-mail: gu_guohao97623@163.com 【通信作者】龙英文,博士,副教授,研究方向:人工智能,E-mail: 1825405229@qq.com;吉明明,博士,副教授,研究方向:系统辨识、控制与优化,E-mail: jimingming923@163.com
更新日期/Last Update: 2022-09-05