[1]尹梓名,董东民,陈涛.基于3D-ResNet深度影像特征的胆囊癌生存预测模型[J].中国医学物理学杂志,2022,39(7):919-924.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.022]
 YIN Ziming,DONG Dongmin,CHEN Tao.Predictive model for survival in gallbladder cancer patients based on 3D-ResNet deep image features[J].Chinese Journal of Medical Physics,2022,39(7):919-924.[doi:DOI:10.3969/j.issn.1005-202X.2022.07.022]
点击复制

基于3D-ResNet深度影像特征的胆囊癌生存预测模型()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第7期
页码:
919-924
栏目:
医学人工智能
出版日期:
2022-07-15

文章信息/Info

Title:
Predictive model for survival in gallbladder cancer patients based on 3D-ResNet deep image features
文章编号:
1005-202X(2022)07-0919-06
作者:
尹梓名1董东民1陈涛2
1.上海理工大学医疗器械与食品学院, 上海 200093; 2.上海交通大学医学院附属仁济医院胆胰外科, 上海 200127
Author(s):
YIN Ziming1 DONG Dongmin1 CHEN Tao2
1. School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
关键词:
深度学习三维卷积神经网络胆囊癌生存模型预后
Keywords:
Keywords: deep learning three-dimensional convolutional neural network gallbladder cancer survival model prognosis
分类号:
R318;R735.8
DOI:
DOI:10.3969/j.issn.1005-202X.2022.07.022
文献标志码:
A
摘要:
建立一个精准的个体化胆囊癌患者生存预测模型,分析、寻找新的胆囊癌预后因素,对于患者预后评估、治疗模式选择、手术患者筛选、术后辅助治疗方案确定及医疗资源合理使用均具有重要意义。本文提出一种基于3D-ResNet提取深度影像特征建立胆囊癌患者生存预后模型的方法,通过迁移学习以及训练3D-ResNet自动提取患者CT的深度特征,并利用提取的深度影像特征,通过Cox比例风险回归模型建立胆囊癌患者的生存预测模型。实验结果表明,基于深度影像特征建立的胆囊癌患者预后因子在预测患者生存时的C指数达到0.734,利用深度影像特征预后因子预测患者的1、3、5年存活率AUC分别达到0.833、0.791、0.813。本方法对胆囊癌预后预测有着良好的指示作用。
Abstract:
Abstract: Establishing an accurate individualized predictive model for survival in gallbladder cancer patients and finding new prognostic factors for gallbladder cancer are of great significance for prognosis evaluation, treatment model selection, surgical patient screening, postoperative adjuvant treatment plan determination, and rational utilization of medical resources. A method to build a predictive model for survival in gallbladder cancer patients based on deep image features extracted by 3D-ResNet is proposed in the study. The deep features of the patients CT image are automatically extracted through transfer learning and 3D-ResNet training, and the extracted deep image features are used to establish a predictive model for survival in gallbladder cancer patients through the Cox proportional hazard regression model. The experimental results show that the C index of prognostic factors obtained based on deep image features is 0.734 for predicting survival in gallbladder cancer patients, and that the AUC of 1-year, 3-year and 5-year survival rates predicted by deep image features reaches 0.833, 0.791 and 0.813, respectively. The proposed method has a good indication for predicting the prognosis of gallbladder cancer.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(7):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(7):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(7):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]何兰,吴倩. 基于3D卷积神经网络的肝脏自动分割方法[J].中国医学物理学杂志,2018,35(6):680.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.012]
 HE Lan,WU Qian. Automatic liver segmentation based on three-dimensional convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(7):680.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.012]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(7):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(7):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[7]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(7):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[8]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(7):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[9]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(7):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[10]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(7):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]

备注/Memo

备注/Memo:
【收稿日期】2021-11-04 【基金项目】国家自然科学基金(81801797, 82074581);国家重点研发计划(2020YFC2005801, 2020YFC2005800) 【作者简介】尹梓名,博士,讲师,主要研究方向:医学人工智能、临床决策支持,E-mail: yinziming1@163.com
更新日期/Last Update: 2022-07-15