[1]徐亮,陶倩,钟菁,等.基于卷积神经网络的房颤患者导管消融术后复发预测[J].中国医学物理学杂志,2022,39(8):1035-1040.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.021]
 XU Liang,TAO Qian,ZHONG Jing,et al.Prediction of recurrence after catheter ablation in patients with atrial fibrillation based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(8):1035-1040.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.021]
点击复制

基于卷积神经网络的房颤患者导管消融术后复发预测()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第8期
页码:
1035-1040
栏目:
医学人工智能
出版日期:
2022-08-04

文章信息/Info

Title:
Prediction of recurrence after catheter ablation in patients with atrial fibrillation based on convolutional neural network
文章编号:
1005-202X(2022)08-1035-06
作者:
徐亮1陶倩1钟菁2肖晶晶1
1.陆军军医大学第二附属医院医学工程科, 重庆 400037; 2.陆军军医大学第二附属医院心内科, 重庆 400037
Author(s):
XU Liang1 TAO Qian1 ZHONG Jing2 XIAO Jingjing1
1. Department of Medical Engineering, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China 2. Department of Cardiology, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
关键词:
心房颤动导管消融术卷积神经网络术后复发
Keywords:
Keywords: atrial fibrillation catheter ablation convolutional neural network postoperative recurrence
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.08.021
文献标志码:
A
摘要:
通过采集患者术前的基础病史信息、影像检查信息、生化检查信息等资料,利用统计学和卷积神经网络相结合的方法对导管消融术预后情况进行预测。本研究中纳入了121例经射频消融手术治疗后的房颤患者,利用深度学习,先将生化检查的60个指标通过调整结构与参数建立3个房颤复发预测模型,复发预测精度最高为0.7(95%CI:0.536~0.864)。然后,将基础病史资料特征信息、影像检查信息进行统计学筛选和数据标准化处理,根据P值将差异性最大的10个特征与生化检查的60个特征融合,进行多因素跨模态的深度学习,建立3个深度模型,得到的房颤复发预测模型最高准确率为0.8(95%CI:0.657~0.943)。通过多组实验发现,深度模型并非越复杂越好,在样本量有限的情况下,选取合理的模型复杂度,并纳入多种模态特征可以获得更高的预测精度。
Abstract:
Abstract: The basic medical history, and the results of imaging examination and biochemical examination of patients before operation are collected for predicting the prognosis of catheter ablation by the combination of statistics and convolution neural network. A total of 121 patients with atrial fibrillation (AF) after radiofrequency ablation were enrolled in this study. The 60 indexes of biochemical examination are used for deep learning to establish 3 different prediction models of AF recurrence by adjusting the structure and parameters, and a recurrence prediction accuracy up to 0.7 is achieved (95% CI: 0.536-0.864). Then, statistical screening and data standardization are performed on the characteristic information of basic medical history and image examination information.According to the P value, the 10 features with the largest difference are combined with the 60 features of biochemical examination to carry out multi-factor cross-modal in-depth learning. The highest accuracy of the AF recurrence prediction model obtained from the 3 models reaches 0.8 (95%CI: 0.657-0.943). Through multiple groups of experiments, it is found that the deep learning model is not the more complex the better. In the case of limited sample size, selecting a reasonable model complexity and incorporating multiple modal features can obtain higher prediction accuracy.

相似文献/References:

[1]虞康惠,江桂华,成官迅.多层螺旋CT肺静脉成像在房颤射频消融术中的应用价值[J].中国医学物理学杂志,2016,33(5):515.[doi:10.3969/j.issn.1005-202X.2016.05.017]
 [J].Chinese Journal of Medical Physics,2016,33(8):515.[doi:10.3969/j.issn.1005-202X.2016.05.017]
[2]张悦,陈真诚,梁永波,等.基于光电容积脉搏波的心房颤动识别方法[J].中国医学物理学杂志,2020,37(11):1416.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.014]
 ZHANG Yue,CHEN Zhencheng,LIANG Yongbo,et al.Atrial fibrillation identification based on photoplethysmography[J].Chinese Journal of Medical Physics,2020,37(8):1416.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.014]
[3]方东申,叶琪瑶,石少波,等.基于心电长时RR间期序列的心房颤动检测[J].中国医学物理学杂志,2023,40(8):1009.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.014]
 FANG Dongshen,YE Qiyao,SHI Shaobo,et al.Atrial fibrillation detection based on long-term RR interval sequences of electrocardiogram[J].Chinese Journal of Medical Physics,2023,40(8):1009.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.014]
[4]张瑞芳,梁永波,崔谋,等.结合多模态融合方式的脉搏波房颤识别[J].中国医学物理学杂志,2023,40(10):1260.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.013]
 ZHANG Ruifang,LIANG Yongbo,,et al.Multimodal fusion approach to detect atrial fibrillation using PPG[J].Chinese Journal of Medical Physics,2023,40(8):1260.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.013]

备注/Memo

备注/Memo:
【收稿日期】2022-04-26 【基金项目】国家自然科学基金(62076247, 61701506);陆军军医大学临床人才项目(2018XLC3023) 【作者简介】徐亮,研究方向:人工智能在临床医学中的应用研究,E-mail: 247244526@qq.com 【通信作者】肖晶晶,工程师,研究方向:人工智能和数据分析技术,E-mail: shine636363@sina.com
更新日期/Last Update: 2022-09-05