[1]蒋芙蓉,赵静文,刘翔,等.基于病理图像的计算机辅助诊断进展[J].中国医学物理学杂志,2022,39(3):384-389.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.020]
 JIANG Furong,ZHAO Jingwen,LIU Xiang,et al.Advances in computer-aided diagnosis based on pathological images[J].Chinese Journal of Medical Physics,2022,39(3):384-389.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.020]
点击复制

基于病理图像的计算机辅助诊断进展()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第3期
页码:
384-389
栏目:
医学人工智能
出版日期:
2022-03-28

文章信息/Info

Title:
Advances in computer-aided diagnosis based on pathological images
文章编号:
1005-202X(2022)03-0384-06
作者:
蒋芙蓉1赵静文1刘翔1石蕴玉1汤显1宋家琳2
1.上海工程技术大学电子电气工程学院, 上海 201620; 2.第二军医大学附属长征医院超声科, 上海 200003
Author(s):
JIANG Furong1 ZHAO Jingwen1 LIU Xiang1 SHI Yunyu1 TANG Xian1 SONG Jialin2
1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2. Department of Ultrasound, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
关键词:
癌症组织病理图像计算机辅助诊断机器学习综述
Keywords:
Keywords: cancer histopathological image computer-aided diagnosis machine learning review
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.03.020
文献标志码:
A
摘要:
临床上对癌症的组织病理诊断是所有诊断方式的金标准。由于病理医师的主观决策性,基于显微镜观察的诊断结果准确率不高。随着计算机技术的快速发展,计算机辅助诊断用于病理图像分析成为人工智能领域的潮流。本研究对近年来病理图像辅助诊断的相关文献进行回顾,重点论述病理图像来源、机器学习的分阶段处理、端到端的全自动诊断及病理图像检索等方面的研究进展,最后对基于病理图像的计算机辅助诊断的发展趋势进行展望。
Abstract:
Abstract: Histopathological diagnosis is the gold standard for all diagnostic modalities of cancer. Due to the subjective decision-making of pathologists, the accuracy of the diagnostic results based on microscopic observation is not high. With the rapid development of computer technology, computer-aided diagnosis for pathological image analysis has become a trend in the field of artificial intelligence. Herein the literatures related to pathological image assisted diagnosis in recent years are reviewed, mainly focusing on the research advances in pathological image sources, phased processing with machine learning, end-to-end fully automatic diagnosis and pathological image retrieval. Finally, an outlook on the development trend of the computer-aided diagnosis based on pathological images is provided.

相似文献/References:

[1]辛学刚. 磁共振组织介电特性断层成像在癌症早期发现中的应用[J].中国医学物理学杂志,2016,33(12):1204.[doi:10.3969/j.issn.1005-202X.2016.12.004]
 [J].Chinese Journal of Medical Physics,2016,33(3):1204.[doi:10.3969/j.issn.1005-202X.2016.12.004]
[2]高冲,秦玉芳,陈明.基于通路活性的抗癌药物敏感性预测[J].中国医学物理学杂志,2021,38(12):1569.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.020]
 GAO Chong,QIN Yufang,et al.Predicting anticancer drug sensitivity based on pathway activity[J].Chinese Journal of Medical Physics,2021,38(3):1569.[doi:DOI:10.3969/j.issn.1005-202X.2021.12.020]
[3]宋春晖,秦玉芳,陈明.基于部分DNA甲基化预测肿瘤浸润免疫细胞的比例[J].中国医学物理学杂志,2022,39(5):627.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.018]
 SONG Chunhui,QIN Yufang,et al.Predicting the proportions of tumor-infiltrating immune cells based on partial DNA methylation[J].Chinese Journal of Medical Physics,2022,39(3):627.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.018]

备注/Memo

备注/Memo:
【收稿日期】2021-08-08 【基金项目】国家自然科学基金(61802251);上海市自然科学基金(19ZR1421500) 【作者简介】蒋芙蓉,硕士研究生,研究方向:医学图像处理,E-mail: furongeve@163.com 【通信作者】赵静文,博士,讲师,研究方向:计算机视觉、医学图像处理,E-mail: jingwen_echo@outlook.com
更新日期/Last Update: 2022-03-28