[1]谢丰雪,杨帆,冯维,等.基于深度学习的低剂量CT图像去噪[J].中国医学物理学杂志,2022,39(5):547-550.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.004]
 XIE Fengxue,YANG Fan,FENG Wei,et al.Low-dose CT image denoising based on deep learning[J].Chinese Journal of Medical Physics,2022,39(5):547-550.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.004]
点击复制

基于深度学习的低剂量CT图像去噪()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第5期
页码:
547-550
栏目:
医学影像物理
出版日期:
2022-05-27

文章信息/Info

Title:
Low-dose CT image denoising based on deep learning
文章编号:
1005-202X(2022)05-0547-04
作者:
谢丰雪1杨帆1冯维1曾雷雷2缪月红1雷平贵3
1.贵州医科大学生物与工程学院, 贵州 贵阳 550025; 2.贵州医科大学大健康学院, 贵州 贵阳 550025; 3.贵州医科大学附属医院影像科, 贵州 贵阳 550004
Author(s):
XIE Fengxue1 YANG Fan1 FENG Wei1 ZENG Leilei2 MIAO Yuehong1 LEI Pinggui3
1. School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China 2. School of Big Health, Guizhou Medical University, Guiyang 550025, China 3. Department of Radiology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
关键词:
低剂量CT图像去噪深度学习多尺度并行残差U-net
Keywords:
Keywords: low-dose computed tomography image denoising deep learning multiscale parallel residual U-net
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2022.05.004
文献标志码:
A
摘要:
目的:提出一种基于深度学习的方法用于低剂量CT(LDCT)图像的噪声去除。方法:首先进行滤波反投影重建,然后利用多尺度并行残差U-net(MPR U-net)的深度学习模型对重建后的LDCT图像进行去噪。实验数据采用LoDoPaB-CT挑战赛的医学CT数据集,其中训练集35 820张图像,验证集3 522张图像,测试集3 553张图像,并采用峰值信噪比(PSNR)与结构相似性系数(SSIM)来评估模型的去噪效果。结果:LDCT图像处理前后PSNR分别为28.80、38.22 dB,SSIM分别为0.786、0.966,平均处理时间为0.03 s。结论:MPR U-net深度学习模型能较好地去除LDCT图像噪声,提升PSNR,保留更多图像细节。
Abstract:
Objective To propose a deep learning-based method for low-dose computed tomography (LDCT) image denoising. Methods After reconstruction by filtered back projection, a deep learning model of multiscale parallel residual U-net (MPR U-net) was used for denoising the reconstructed LDCT images. The medical CT datasets of LoDoPaB-CT Challenge were used in the experiment, including 35 820 images in training set, 3 522 images in validation set and 3 553 images in test set. The denoising effect of the model was evaluated by peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Results The PSNR before and after LDCT image denoising was 28.80 and 38.22 dB, respectively, and the SSIM was 0.786 and 0.966, respectively. The average processing time was 0.03 s. Conclusion The proposed MPR U-net deep learning model can remove LDCT image noise better, improve PSNR and retain more image details.

相似文献/References:

[1]王 为,张松方,屠永清,等.基于Contourlet阈值法的锥形束CT图像去噪研究[J].中国医学物理学杂志,2014,31(06):5275.[doi:10.3969/j.issn.1005-202X.2014.06.013]
[2]钱姗姗,边兆英,路利军,等.两种基于Anscombe变换域滤波的低剂量CT重建方法讨论[J].中国医学物理学杂志,2013,30(02):4023.[doi:10.3969/j.issn.1005-202X.2013.02.015]
[3]王为,吴国华,沈奕晨,等.基于MATLAB的锥形束CT图像去噪研究[J].中国医学物理学杂志,2013,30(04):4278.[doi:10.3969/j.issn.1005-202X.2013.04.015]
[4]张辉见,陈始均,郑少斌.基于向量全变分的双源CT图像在泌尿系统疾病中的去噪研究[J].中国医学物理学杂志,2015,32(05):721.[doi:doi:10.3969/j.issn.1005-202X.2015.05.024]
[5]刘国才,王帅卿,朱苏雨.正电子发射断层扫描图像非局部几何非线性扩散去噪方法[J].中国医学物理学杂志,2016,33(4):357.[doi:10.3969/j.issn.1005-202X.2016.04.007]
 [J].Chinese Journal of Medical Physics,2016,33(5):357.[doi:10.3969/j.issn.1005-202X.2016.04.007]
[6]陈伟国,贺捷新,莫天澜,等. 低剂量CT心肌灌注鲁棒去卷积参数成像方法[J].中国医学物理学杂志,2017,34(11):1131.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.010]
 CHEN Weiguo,HE Jiexin,MO Tianlan,et al. Robust deconvolution for low-dose CT myocardial perfusion imaging[J].Chinese Journal of Medical Physics,2017,34(5):1131.[doi:DOI:10.3969/j.issn.1005-202X.2017.11.010]
[7]洪启帆,玄祖兴,李雅馨.基于全卷积神经网络的低剂量CT去噪算法[J].中国医学物理学杂志,2023,40(6):695.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.005]
 HONG Qifan,XUAN Zuxing,LI Yaxin.Fully convolutional neural network based algorithm for low-dose CT image denoising[J].Chinese Journal of Medical Physics,2023,40(5):695.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.005]
[8]李晓增,王宝珠,郭志涛,等.一种用于低剂量CT的微小细节保护CNN与Transformer融合去噪方法[J].中国医学物理学杂志,2024,41(7):842.[doi:1005-202X(2024)07-0842-09]
 LI Xiaozeng,WANG Baozhu,GUO Zhitao,et al.Low-dose CT denoising method with CNN and Transformer to preserve tiny details[J].Chinese Journal of Medical Physics,2024,41(5):842.[doi:1005-202X(2024)07-0842-09]

备注/Memo

备注/Memo:
【收稿日期】2021-12-20 【基金项目】贵州省科技计划项目[黔科合基础-ZK[2021]一般478];贵州省普通高等学校青年科技人才成长项目[黔教合KY字[2021]180];2020年省级大学生创新创业训练计划项目(S202010660031) 【作者简介】谢丰雪,硕士研究生,主要从事医学图像处理研究,E-mail: 1848431199@qq.com 【通信作者】杨帆,副教授,主要从事医学图像及人工智能等研究,E-mail: yangfan0404@126.com
更新日期/Last Update: 2022-05-27