相似文献/References:
[1]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(4):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
[2]周意龙,卫子然,蔡清萍,等.基于卷积神经网络胃癌分割与T分期算法[J].中国医学物理学杂志,2022,39(2):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
ZHOU Yilong,WEI Ziran,CAI Qingping,et al.Gastric cancer segmentation and T staging algorithm based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(4):215.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.015]
[3]江悦莹,施一萍,翁晓俊,等.融合Vnet和边缘特征的肺结节分割算法[J].中国医学物理学杂志,2022,39(6):705.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.009]
JIANG Yueying,SHI Yiping,WENG Xiaojun,et al.Lung nodule segmentation algorithm integrating Vnet and boundary features[J].Chinese Journal of Medical Physics,2022,39(4):705.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.009]
[4]刘雲,王一达,张成秀,等.基于深度学习结合解剖学注意力机制的肺结节良恶性分类[J].中国医学物理学杂志,2022,39(11):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
LIU Yun,WANG Yida,ZHANG Chengxiu,et al.Classification of benign and malignant pulmonary nodules by deep learning with anatomy-based attention mechanism[J].Chinese Journal of Medical Physics,2022,39(4):1441.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.019]
[5]陈菁菁,李小霞,吕念祖.结合通道权重更新与密集残差金字塔空间注意力的皮肤病变分割方法[J].中国医学物理学杂志,2023,40(1):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
CHEN Jingjing,LI Xiaoxia,L?Nianzu,et al.Skin lesion segmentation method combining channel weight update and dense residual pyramid spatial attention[J].Chinese Journal of Medical Physics,2023,40(4):39.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.007]
[6]王振华,刘阳星,赵晓雨,等.结合上下文和注意力机制改进的视盘分割模型[J].中国医学物理学杂志,2023,40(1):47.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.008]
WANG Zhenhua,LIU Yangxing,ZHAO Xiaoyu,et al.Optic disc segmentation model improved by contextual information and attention mechanism[J].Chinese Journal of Medical Physics,2023,40(4):47.[doi:DOI:10.3969/j.issn.1005-202X.2023.01.008]
[7]邸敬,马帅,王国栋,等.基于改进Unet与动态阈值可变FCMSPCNN的医学图像分割[J].中国医学物理学杂志,2023,40(3):328.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.011]
DI Jing,MA Shuai,WANG Guodong,et al.Medical image segmentation using improved Unet combined with dynamic threshold changed FCMSPCNN[J].Chinese Journal of Medical Physics,2023,40(4):328.[doi:DOI:10.3969/j.issn.1005-202X.2023.03.011]
[8]魏坤,沈记全,赵艳梅.MAUNet:用于皮肤病变分割的轻量级模型[J].中国医学物理学杂志,2023,40(5):555.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.006]
WEI Kun,SHEN Jiquan,ZHAO Yanmei.MAUNet: a lightweight model for skin lesion segmentation[J].Chinese Journal of Medical Physics,2023,40(4):555.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.006]
[9]洪启帆,玄祖兴,李雅馨.基于全卷积神经网络的低剂量CT去噪算法[J].中国医学物理学杂志,2023,40(6):695.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.005]
HONG Qifan,XUAN Zuxing,LI Yaxin.Fully convolutional neural network based algorithm for low-dose CT image denoising[J].Chinese Journal of Medical Physics,2023,40(4):695.[doi:DOI:10.3969/j.issn.1005-202X.2023.06.005]
[10]孟延宗,李小霞,周颖玥,等.基于上下文特征感知和双频上采样的食管早癌图像分割[J].中国医学物理学杂志,2023,40(8):957.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.006]
MENG Yanzong,LI Xiaoxia,ZHOU Yingyue,et al.Early esophageal cancer image segmentation based on contextual feature awareness and dual frequency upsampling[J].Chinese Journal of Medical Physics,2023,40(4):957.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.006]