[1]杨国亮,邹俊峰,李世聪,等.基于U型稠密特征融合的皮肤病灶分割[J].中国医学物理学杂志,2022,39(4):442-447.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.009]
 YANG Guoliang,ZOU Junfeng,LI Shicong,et al.Segmentation of skin lesions based on U-shaped dense feature fusion[J].Chinese Journal of Medical Physics,2022,39(4):442-447.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.009]
点击复制

基于U型稠密特征融合的皮肤病灶分割()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
39卷
期数:
2022年第4期
页码:
442-447
栏目:
医学影像物理
出版日期:
2022-04-27

文章信息/Info

Title:
Segmentation of skin lesions based on U-shaped dense feature fusion
文章编号:
1005-202X(2022)04-0442-06
作者:
杨国亮邹俊峰李世聪温钧林
江西理工大学电气工程与自动化学院, 江西 赣州341000
Author(s):
YANG Guoliang ZOU Junfeng LI Shicong WEN Junlin
School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China
关键词:
黑色素瘤图像分割皮肤病灶多尺度融合深度学习
Keywords:
Keywords: melanoma image segmentation skin lesion multiscale fusion deep learning
分类号:
R318;TP391.41
DOI:
DOI:10.3969/j.issn.1005-202X.2022.04.009
文献标志码:
A
摘要:
皮肤病灶图像分割可作为医学相关类疾病辅助诊断的重要依据。针对皮肤病灶区域结构复杂和尺度信息参差错落的特点,提出一种基于U型稠密特征融合的皮肤病灶分割方法。编码器利用稠密网络结构和空洞空间金字塔池化充分提取特征与融合,由稠密空间注意力模块与深度可分离卷积解码深层特征,防止病灶区域周围噪声干扰,同时引入融合压缩注意力模块进一步提高分割性能,通过二值交叉熵与Jaccard系数结合的损失函数优化。在ISBI 2016皮肤病灶数据集进行仿真评估,Jaccard相似度和Dice系数分别达到86.87%和92.98%,有助于提高皮肤病灶诊断效率。
Abstract:
Abstract: The image segmentation of skin lesions can be used as an important basis for the auxiliary diagnosis of related diseases. Considering the complex structure and uneven scale information of skin lesions, a novel skin lesion segmentation method based on U-shaped dense feature fusion is proposed. The dense network structure and atrous spatial pyramid pooling are adopted in encoder for feature extraction and fusion. The dense spatial attention module and the depthwise separable convolution are used to decode deep features to prevent noise interference around the focal area. Moreover, the segmentation performance is further improved by blend squeeze attention module, and the proposed algorithm is optimized by loss function combining binary cross entropy and Jaccard coefficient. The Jaccard similarity and Dice coefficient in the simulation evaluation on ISBI 2016 skin lesions datasets were 86.87% and 92.98%, respectively. The proposed method is conducive to improving the diagnosis efficiency of skin lesions.

相似文献/References:

[1]陈海斌,甄 鑫,周凌宏.基于先验的随机游走算法在医学图像分割中的应用[J].中国医学物理学杂志,2015,32(02):174.[doi:10.3969/j.issn.1005-202X.2015.02.005]
[2]许红玉,蔡坦坦,叶良凯,等.分水岭算法在CT图像分割中的应用[J].中国医学物理学杂志,2014,31(06):5272.[doi:10.3969/j.issn.1005-202X.2014.06.012]
[3]周露,张书旭,余辉,等.PET-CT图像配准的预处理研究[J].中国医学物理学杂志,2013,30(05):4392.[doi:10.3969/j.issn.1005-202X.2013.05.012]
[4]赖胜圣,刘虔铖,张刚平.基于模糊C均值自动随机游走算法在脑肿瘤分割中的应用[J].中国医学物理学杂志,2015,32(05):707.[doi:doi:10.3969/j.issn.1005-202X.2015.05.021]
[5]刘国才,胡泽田,朱苏雨,等.头颈部肿瘤PET与MRI融合放疗靶区自适应区域生长勾画[J].中国医学物理学杂志,2016,33(3):222.[doi:10.3969/j.issn.1005-202X.2016.03.002]
 [J].Chinese Journal of Medical Physics,2016,33(4):222.[doi:10.3969/j.issn.1005-202X.2016.03.002]
[6]贾高杰,邱崧,蔡茗名,等.三维点云重构和体显示在医学辅助诊断中的应用[J].中国医学物理学杂志,2016,33(6):593.[doi:10.3969/j.issn.1005-202X.2016.06.012]
 [J].Chinese Journal of Medical Physics,2016,33(4):593.[doi:10.3969/j.issn.1005-202X.2016.06.012]
[7]张泽凡,张东.基于交叉熵和GVF-Snake的子宫肌瘤高强度聚焦超声图像自动分割算法[J].中国医学物理学杂志,2016,33(8):776.[doi:10.3969/j.issn.1005-202X.2016.08.005]
 [J].Chinese Journal of Medical Physics,2016,33(4):776.[doi:10.3969/j.issn.1005-202X.2016.08.005]
[8]胡立伟,白凯,钟玉敏,等. 基于不同图像分割法构建3D打印右室双出口模型[J].中国医学物理学杂志,2016,33(12):1272.[doi:10.3969/j.issn.1005-202X.2016.12.020]
 [J].Chinese Journal of Medical Physics,2016,33(4):1272.[doi:10.3969/j.issn.1005-202X.2016.12.020]
[9]孟爽,王辉,谢蓄芬,等.超像素有偏观测模糊聚类的乳腺超声图像分割[J].中国医学物理学杂志,2017,34(7):693.[doi:10.3969/j.issn.1005-202X.2017.07.009]
 [J].Chinese Journal of Medical Physics,2017,34(4):693.[doi:10.3969/j.issn.1005-202X.2017.07.009]
[10]张玉芳,关天民,刘光孟,等. 基于CT数据的医学图像处理系统设计[J].中国医学物理学杂志,2019,36(9):1055.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.012]
 ZHANG Yufang,GUAN Tianmin,LIU Guangmeng,et al. Design of medical image processing system based on CT data[J].Chinese Journal of Medical Physics,2019,36(4):1055.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.012]
[11]王娜,贾伟,赵雪芬,等.基于边缘关键点和边缘注意力的黑色素瘤图像分割方法[J].中国医学物理学杂志,2024,41(10):1225.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.006]
 WANG Na,JIA Wei,ZHAO Xuefen,et al.Melanoma image segmentation method based on edge key points and edge attention[J].Chinese Journal of Medical Physics,2024,41(4):1225.[doi:DOI:10.3969/j.issn.1005-202X.2024.10.006]

备注/Memo

备注/Memo:
【收稿日期】2021-11-12 【基金项目】国家自然科学基金(51365017);江西省教育厅科技计划项目(GJJ190450) 【作者简介】杨国亮,博士,教授,研究方向:人工智能与模式识别,E-mail: ygliang30@126.com;邹俊峰,硕士,研究方向:医学图像处理,E-mail: 936859037@qq.com
更新日期/Last Update: 2022-04-27