相似文献/References:
[1]易伟松,刘文强,陆 东,等.高光谱成像结合化学计量学诊断胃癌组织[J].中国医学物理学杂志,2015,32(01):124.[doi:10.3969/j.issn.1005-202X.2015.01.028]
[2]宋威,赵迪,鹿红,等.胃癌术后调强放疗射野角度优化的剂量学[J].中国医学物理学杂志,2015,32(06):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
[J].Chinese Journal of Medical Physics,2015,32(2):815.[doi:doi:10.3969/j.issn.1005-202X.2015.06.012]
[3]易伟松,钱辉跃,江厚敏.光纤和显微拉曼光谱结合化学计量学鉴别胃癌组织[J].中国医学物理学杂志,2016,33(2):134.[doi:10.3969/j.issn.1005-202X.2016.02.006]
[4]卢晓光,刘细友,郑言宏,等.胃癌术后不同IMRT布野方式对剂量分布的影响[J].中国医学物理学杂志,2016,33(7):664.[doi:10.3969/j.issn.1005-202X.2016.07.004]
[5]刘光波,刘志坤,闫慧娟,等.不同照射技术在全胃癌放疗中的剂量学比较与分析[J].中国医学物理学杂志,2016,33(11):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
[J].Chinese Journal of Medical Physics,2016,33(2):1111.[doi:10.3969/j.issn.1005-202X.2016.11.006]
[6]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[J].Chinese Journal of Medical Physics,2017,34(2):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[7]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[J].Chinese Journal of Medical Physics,2017,34(2):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[8]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(2):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[9]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(2):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[10]蒋大振,刘晖,戴静,等. 胃癌调强放疗中多叶光栅3种状态的剂量学比较[J].中国医学物理学杂志,2019,36(2):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
JIANG Dazhen,LIU Hui,DAI Jing,et al. Dosimetric comparison among split-field, fixed-jaw and rotating multi-leaf collimator in the radiotherapy of gastric carcinoma[J].Chinese Journal of Medical Physics,2019,36(2):166.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.009]
[11]赵呈陆,方志军,高永彬,等.基于改进型V-net卷积神经网络的胃壁分割方法[J].中国医学物理学杂志,2021,38(10):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
ZHAO Chenglu,FANG Zhijun,GAO Yongbin,et al.Gastric wall segmentation based on improved V-net convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(2):1243.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.011]
[12]张育,赵轶峰,苏卓彬,等.基于卷积神经网络的胃癌癌前病变图像分类方法[J].中国医学物理学杂志,2022,39(2):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]
ZHANG Yu,ZHAO Yifeng,SU Zhuobin,et al.Image classification of gastric precancerous lesions based on convolutional neural network[J].Chinese Journal of Medical Physics,2022,39(2):209.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.014]