相似文献/References:
[1]郭家梁,等.基于振幅-周期二维分布的脑电复杂度分析[J].中国医学物理学杂志,2016,33(6):633.[doi:10.3969/j.issn.1005-202X.2016.06.019]
[2]秦耿耿,代月黎,陈卫国,等.基于纤维束的空间统计方式的复发缓解型多发性硬化患者磁共振扩散张量成像与正常人对照[J].中国医学物理学杂志,2016,33(8):799.[doi:10.3969/j.issn.1005-202X.2016.08.009]
[J].Chinese Journal of Medical Physics,2016,33(7):799.[doi:10.3969/j.issn.1005-202X.2016.08.009]
[3]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[J].Chinese Journal of Medical Physics,2017,34(7):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[4]林恒山,林增如,李燕燕,等.磁共振扩散张量成像序列对脊髓型颈椎病的诊断价值[J].中国医学物理学杂志,2019,36(11):1291.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.009]
LIN Hengshan,LIN Zengru,et al.Diagnostic value of diffusion tensor magnetic resonance imaging sequence in cervical spondylotic myelopathy[J].Chinese Journal of Medical Physics,2019,36(7):1291.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.009]
[5]付常洋,王瑜,肖洪兵,等.基于多尺度功能脑网络融合特征的抑郁症分类算法[J].中国医学物理学杂志,2020,37(4):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
FU Changyang,WANG Yu,XIAO Hongbing,et al.Classification of depression using fusion features based on multi-scale functional brain network[J].Chinese Journal of Medical Physics,2020,37(7):439.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.008]
[6]王静,孔令茵,雷炳业,等.抑郁症的脑复杂网络研究进展[J].中国医学物理学杂志,2020,37(6):780.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.023]
WANG Jing,KONG Lingyin,LEI Bingye,et al.Advances in research on complex brain networks in depression[J].Chinese Journal of Medical Physics,2020,37(7):780.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.023]
[7]刘良友,李兆同,张泽茹,等.基于参考图像的压缩感知磁共振扩散张量成像[J].中国医学物理学杂志,2021,38(3):323.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.010]
LIU Liangyou,LI Zhaotong,ZHANG Zeru,et al.Compressed sensing diffusion tensor imaging based on reference image[J].Chinese Journal of Medical Physics,2021,38(7):323.[doi:DOI:10.3969/j.issn.1005-202X.2021.03.010]
[8]计亚荣,王瑜,付常洋,等.基于典型相关分析与双模态数据融合的抑郁症辅助诊断[J].中国医学物理学杂志,2021,38(10):1316.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.024]
JI Yarong,WANG Yu,FU Changyang,et al.Aided diagnosis of major depressive disorder based on canonical correlation analysis and bimodal data fusion[J].Chinese Journal of Medical Physics,2021,38(7):1316.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.024]
[9]刁云恒,王慧颖,董娇,等.机器学习在抑郁症辅助诊断中的应用进展[J].中国医学物理学杂志,2022,39(2):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]
DIAO Yunheng,WANG Huiying,et al.Advances in the application of machine learning in auxiliary diagnosis of depression[J].Chinese Journal of Medical Physics,2022,39(7):257.[doi:DOI:10.3969/j.issn.1005-202X.2022.02.021]
[10]段逸凡,王瑜,付常洋,等.基于双模态磁共振成像和决策层融合的抑郁症辅助诊断[J].中国医学物理学杂志,2022,39(3):378.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.019]
DUAN Yifan,WANG Yu,FU Changyang,et al.Auxiliary diagnosis of depression based on bimodal magnetic resonance imaging and decision level fusion[J].Chinese Journal of Medical Physics,2022,39(7):378.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.019]