[1]段欢欢,李书舟,曹瑛,等.基于深度学习方法预测IMRT计划射野的γ通过率[J].中国医学物理学杂志,2021,38(6):677-681.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
 . School of Nuclear Science and Technology,University of South China,Hengyang 00,et al.Predicting gamma passing rates for intensity-modulated radiotherapy fields based on deep learning method[J].Chinese Journal of Medical Physics,2021,38(6):677-681.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.004]
点击复制

基于深度学习方法预测IMRT计划射野的γ通过率()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第6期
页码:
677-681
栏目:
医学放射物理
出版日期:
2021-06-29

文章信息/Info

Title:
Predicting gamma passing rates for intensity-modulated radiotherapy fields based on deep learning method
文章编号:
1005-202X(2021)06-0677-05
作者:
段欢欢1李书舟2曹瑛2唐杜2雷明军2杨振2邱小平1
1.南华大学核科学技术学院, 湖南 衡阳 421001; 2.中南大学湘雅医院肿瘤科, 湖南 长沙 410008
Author(s):
1. School of Nuclear Science and Technology University of South China Hengyang 421001 China 2. Department of Oncology Xiangya Hospital Central South University Changsha 410008 China
1. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China 2. Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
关键词:
脑胶质瘤深度学习γ通过率IMRT质量保证
Keywords:
Keywords: gliomas deep learning gamma passing rate intensity-modulated radiotherapy quality assurance
分类号:
R318;R815.6
DOI:
DOI:10.3969/j.issn.1005-202X.2021.06.004
文献标志码:
A
摘要:
目的:建立卷积神经网络(CNN)模型预测IMRT计划射野的γ通过率(GPR)。方法:从Eclipse治疗计划系统中选取48例脑胶质瘤患者的IMRT计划,共计260个照射野,制作每个计划基于电子射野影像系统测量的验证计划,并在Varian 23EX直线加速器上执行。利用portal dosimetry剂量测定软件包对计划剂量的计算值和电子射野影像系统实测值进行γ分析,得到射野在2%(global)/2 mm标准下的GPR。选取portal dosimetry系统计算的剂量分布图作为输入数据,并将数据集划分为训练集208个射野,验证集和测试集各26个射野。基于tensorflow框架建立CNN模型去学习射野的剂量分布图与GPR之间的相关性,并使用平均绝对误差对模型的预测效果进行评估。结果:在验证集和测试集上,96%样本的GPR预测误差都小于±3%,最大误差分别为3.09%和3.54%,平均绝对误差分别为0.99%和1.17%,模型预测和实际测量的GPR之间的皮尔逊相关性系数r分别为0.96和0.90。结论:深度学习CNN模型可以准确地预测脑胶质瘤患者IMRT计划射野的GPR,有助于物理师提前识别可能不能通过QA测量的计划,有效地促进临床放疗的QA工作。
Abstract:
Abstract: Objective To develop a convolution neural network (CNN) model for predicting the gamma passing rates (GPR) for intensity-modulated radiotherapy (IMRT) fields. Methods The IMRT plans of 48 gliomas patients were extracted from Eclipse treatment planning system, with a total of 260 radiation fields. The corresponding verification plan of each IMRT plan was designed based on the measurements of electronic portal imaging device, and it was delivered on Varian 23 EX Linac. Then, portal dosimetry system was used for Gamma analysis on calculated dose and actual dose measured by electronic portal imaging device, thereby obtaining GPR under 2% (global)/2 mm criterion. The dose distribution map obtained by portal dosimetry system was taken as input, and the data set was divided into training set (208 fields), validation set (26 fields) and test set (26 fields). A CNN model which was developed based on tensorflow framework was used to learn the correlation between the dose distribution map and GPR and mean absolute error was used to evaluate the prediction effect of the model. Results In validation set and test set, the GPR prediction errors of 96% of samples were less than ±3%, with a maximum prediction error of 3.09% and 3.54% and a mean absolute error of 0.99% and 1.17%. The Pearson correlation coefficients between predicted and measured GPR in validation set and test set were 0.96 and 0.90, respectively. Conclusion The CNN model developed based on deep learning can accurately predict the GPR for gliomas IMRT fields, which can inform the physicists which plans may not meet the requirement of quality assurance in advance, thereby effectively promoting the quality assurance of clinical radiotherapy.

相似文献/References:

[1]周 钢,田 野,陆雪官,等.同步加量技术应用于脑胶质瘤术后调强放疗的剂量学研究[J].中国医学物理学杂志,2014,31(02):4727.[doi:10.3969/j.issn.1005-202X.2014.02.002]
[2]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(6):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[3]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(6):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[4]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[5]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(6):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[6]戴红娅,黄江华,陈露,等. RapidArc和IMRT在脑胶质瘤术后放疗中保护海马的剂量学比较[J].中国医学物理学杂志,2018,35(12):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
 DAI Hongya,HUANG Jianghua,CHEN Lu,et al. Dosimetric comparison of RapidArc and IMRT in hippocampus sparing during postoperative radiotherapy for glioma[J].Chinese Journal of Medical Physics,2018,35(6):1404.[doi:DOI:10.3969/j.issn.1005-202X.2018.12.007]
[7]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(6):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[8]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(6):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[9]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(6):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[10]郭飞宝.高分级脑胶质瘤4种同步加量调强放射治疗的剂量学分析[J].中国医学物理学杂志,2019,36(12):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
 GUO Feibao.Dosimetric analysis of 4 types of simultaneous integrated boost radiotherapy for high-grade glioma[J].Chinese Journal of Medical Physics,2019,36(6):1396.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.006]
[11]计亚荣,王瑜,肖洪兵,等.基于TensorMixup的脑胶质瘤全自动分割[J].中国医学物理学杂志,2022,39(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]
 JI Yarong,WANG Yu,XIAO Hongbing,et al.Fully automated glioma segmentation based on TensorMixup[J].Chinese Journal of Medical Physics,2022,39(6):1502.[doi:DOI:10.3969/j.issn.1005-202X.2022.12.008]
[12]游慧霞,张怀岺.深度学习和影像组学在脑胶质瘤诊疗中的研究进展[J].中国医学物理学杂志,2023,40(12):1502.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]
 YOU Huixia,ZHANG Huailing.Deep learning and radiomics in diagnosis and treatment of glioma: a review[J].Chinese Journal of Medical Physics,2023,40(6):1502.[doi:DOI:10.3969/j.issn.1005-202X.2023.12.008]

备注/Memo

备注/Memo:
【收稿日期】2021-01-20 【基金项目】国家自然科学基金青年科学基金(61906215) 【作者简介】段欢欢,硕士研究生,研究方向:医学物理,E-mail: 985856963@qq.com 【通信作者】邱小平,教授,研究方向:核技术应用,E-mail: nh6551@163.com;杨振,副教授,研究方向:肿瘤放射物理学,E-mail: zhenyang@csu.edu.cn
更新日期/Last Update: 2021-06-29