[1]张富利,杨安宁,路娜,等.基于FC_DenseNet深度学习网络自动分割肺癌放疗中的危及器官[J].中国医学物理学杂志,2021,38(2):259-264.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.024]
 ZHANG Fuli,YANG Anning,LU Na,et al.FC_Densenet-based autosegmentation of organs-at-risk in lung cancer radiotherapy[J].Chinese Journal of Medical Physics,2021,38(2):259-264.[doi:DOI:10.3969/j.issn.1005-202X.2021.02.024]
点击复制

基于FC_DenseNet深度学习网络自动分割肺癌放疗中的危及器官()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第2期
页码:
259-264
栏目:
医学人工智能
出版日期:
2021-02-02

文章信息/Info

Title:
FC_Densenet-based autosegmentation of organs-at-risk in lung cancer radiotherapy
文章编号:
1005-202X(2021)02-0259-06
作者:
张富利1杨安宁2路娜1蒋华勇1陈点点1郁艳军1王雅棣1
1.解放军总医院第七医学中心放疗科, 北京 100700; 2.北京航空航天大学自动化科学与电气工程学院, 北京 100191
Author(s):
ZHANG Fuli1 YANG Anning2 LU Na1 JIANG Huayong1 CHEN Diandian1 YU Yanjun1 WANG Yadi1
1. Department of Radiation Oncology, the Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China 2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
关键词:
肺癌危及器官医学图像分割密集连接深度学习
Keywords:
Keywords: lung cancer organs-at-risk medical image segmentation DenseNet deep learning
分类号:
R318;R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2021.02.024
文献标志码:
A
摘要:
目的:建立一种基于密集连接深度学习的端到端胸部CT图像危及器官自动分割方法,提供一个高精度的自动分割模型,减轻医师临床勾画的工作强度。方法:收集36例肺癌患者CT图像,27例作为训练集,随机取6例作为验证集进行交叉验证,测试集为9例,训练时间约为5 h,完成了左肺、右肺、脊髓、心脏4个危及器官的自动分割,并使用Dice系数、HD95距离与平均表面距离(ASD)3个指标对测试集进行测试。结果:测试集的分割结果显示,与U-Net与ResNet50相比,FC_DenseNet网络在Dice值、HD95、ASD指标上表现较好,但是不同网络之间的分割结果并没有显著差异(P>0.05),FC_DenseNet网络Dice值最高是左肺为0.98,最低为心脏0.84。结论:本研究的结果表明,密集连接结构的深度学习模型能够较为准确地分割左右肺、脊髓、心脏4个危及器官,这种特征图复用的思想为基于深度学习的医学图像分割提供了新思路。
Abstract:
Abstract: Objective To introduce a method for the end-to-end autosegmentation of organs-at-risk in chest CT images based on dense connection deep learning, and to provide a high-precision autosegmentation model for reducing doctors’ workload. Methods The CT images of 36 lung cancer patients were analyzed in this study. Twenty-seven cases out of 36 cases were randomly selected as training set, 6 cases as validation set for cross validation, and 9 cases as testing set. The training time was about 5 hours, and the segmentations of 4 organs-at-risk including the left and right lungs, spinal cord and heart were completed. The testing set was evaluated by Dice coefficient, HD95 distance and average surface distance. Results Compared with U-Net ResNet50, DenseNet was better in Dice coefficient, HD95 and average surface distance. However, there was no significant difference in segmentation results among 3 networks. The highest Dice coefficient of DenseNet was 0.98 for the left lung, while the lowest was 0.84 for the heart. Conclusion The left and right lungs, spinal cord and heart can be accurately segmented by dense connection deep learning model. The idea of feature map reuse provides a new idea for medical image segmentation based on deep learning.

相似文献/References:

[1]史贵连,叶福丽.肺癌调强放疗计划的设计[J].中国医学物理学杂志,2015,32(03):361.[doi:10.3969/j.issn.1005-202X.2015.03.013]
[2]朱夫海,吴伟章,王 勇,等.肺癌螺旋断层放疗计划设计的初步研究[J].中国医学物理学杂志,2014,31(04):4979.[doi:10.3969/j.issn.1005-202X.2014.04.002]
[3]翁邓胡,王 建,尹中明,等.基于锥形束CT研究肺癌图像引导放疗的内靶区外放边界值[J].中国医学物理学杂志,2014,31(04):5012.[doi:10.3969/j.issn.1005-202X.2014.04.009]
[4]彭莹莹,张书旭,谭剑明,等.基于PCNN的PET/CT图像分割在肺癌靶区勾画中的应用[J].中国医学物理学杂志,2014,31(04):5022.[doi:10.3969/j.issn.1005-202X.2014.04.011]
[5]王 涛,王运来.基于4D-CT和Mimics软件模拟分析肺癌肿瘤的呼吸运动规律[J].中国医学物理学杂志,2014,31(05):5132.[doi:10.3969/j.issn.1005-202X.2014.05.008]
[6]周 琼,周剑良,张一戈,等.基于锥形束CT肺癌放射治疗两种体位固定技术摆位误差的研究[J].中国医学物理学杂志,2014,31(06):5258.[doi:10.3969/j.issn.1005-202X.2014.06.008]
[7]蒋晓芹,段宝风,艾平,等.基于图谱库的自动轮廓勾画软件(ABAS)在鼻咽癌调强放疗中的应用[J].中国医学物理学杂志,2013,30(02):3997.[doi:10.3969/j.issn.1005-202X.2013.02.008]
[8]张矛,金海国,苏清秀,等.肺癌静态调强与容积旋转调强放射治疗间比较[J].中国医学物理学杂志,2013,30(05):4364.[doi:10.3969/j.issn.1005-202X.2013.05.006]
[9]倪千喜,唐迪红,张九堂,等.妇科肿瘤后装逆向调强放射治疗的剂量学和疗效研究[J].中国医学物理学杂志,2013,30(06):4487.[doi:10.3969/j.issn.1005-202X.2013.06.005]
[10]张艺宝,吴昊,李莎,等.临床前验证与几何对比分析基于图谱库的危及器官自动勾画[J].中国医学物理学杂志,2015,32(06):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]
 [J].Chinese Journal of Medical Physics,2015,32(2):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]

备注/Memo

备注/Memo:
【收稿日期】2020-12-10 【基金项目】北京市科技计划首都临床特色应用研究专项课题(Z1811- 00001718011) 【作者简介】张富利,副主任技师/副教授,主要从事多模态影像引导精确放疗、辐射防护与保健物理等临床科研工作,E-mail: radiozfli@163.com
更新日期/Last Update: 2021-02-04