[1]刘胜,范承武.CT诊断重症肺炎支原体肺炎的价值[J].中国医学物理学杂志,2021,38(7):842-845.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.010]
 LIU Sheng,FAN Chengwu.Value of CT in diagnosing severe Mycoplasma pneumoniae pneumonia[J].Chinese Journal of Medical Physics,2021,38(7):842-845.[doi:DOI:10.3969/j.issn.1005-202X.2021.07.010]
点击复制

CT诊断重症肺炎支原体肺炎的价值()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第7期
页码:
842-845
栏目:
医学影像物理
出版日期:
2021-07-26

文章信息/Info

Title:
Value of CT in diagnosing severe Mycoplasma pneumoniae pneumonia
文章编号:
1005-202X(2021)07-0842-04
作者:
刘胜范承武
桂林市第二人民医院儿科, 广西 桂林 541001
Author(s):
LIU Sheng FAN Chengwu
Department of Pediatrics, the Second Peoples Hospital of Guilin, Guilin 541001, China
关键词:
重症肺炎支原体肺炎电子计算机断层扫描X线检查
Keywords:
Keywords: severe Mycoplasma pneumoniae pneumonia computer tomography X-ray examination
分类号:
R563.1
DOI:
DOI:10.3969/j.issn.1005-202X.2021.07.010
文献标志码:
A
摘要:
目的:研究电子计算机断层扫描(CT)诊断重症肺炎支原体肺炎(SMPP)的价值。方法:50例SMPP患者均接受X线和CT检查,比较两种诊断方法的确诊率和误诊率。观察X线和CT诊断的影像学表现。结果:CT检查组确诊率显著高于X线组(94.00% vs 72.00%, P<0.05),CT检查组误诊率显著低于X线组(6.00% vs 28.00%, P<0.05)。结论:CT诊断SMPP确诊率较高,误诊率较低,能够清晰反映患者混合性病症和支气管病变,具有较高的临床参考价值。
Abstract:
Abstract: Objective To explore the diagnostic value of computed tomography (CT) in severe Mycoplasma pneumoniae pneumonia (SMPP). Methods A total of 50 SMPP patients received both X-ray and CT examinations. The diagnostic rate and misdiagnostic rate of two kinds of examinations were compared and the imaging findings in X-ray and CT diagnoses were observed. Results Compared with X-ray examination group, CT examination group had a significantly higher diagnostic rate (94.00% vs 72.00%) and obviously lower misdiagnostic rate (6.00% vs 28.00%), and the differences were statistically significant (P<0.05). Conclusion Using CT for SMPP diagnosis can not only achieve a high diagnostic rate and a low misdiagnosis rate, but also clearly reflect the patients mixed disease and bronchial lesions, with a high clinical reference value.

相似文献/References:

[1]蔡爱楠,随力,王君. CT/MRI双模态造影剂的制备及研究进展[J].中国医学物理学杂志,2018,35(2):219.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.020]
 CAI Ainan,SUI Li,WANG Jun. Preparation and research progress of CT/MRI bimodal contrast agent[J].Chinese Journal of Medical Physics,2018,35(7):219.[doi:DOI:10.3969/j.issn.1005-202X.2018.02.020]
[2]窦益腾,朱新进,夏俊,等. 64排螺旋CT对结节性甲状腺肿的诊断价值[J].中国医学物理学杂志,2018,35(3):303.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.011]
 DOU Yiteng,ZHU Xinjin,XIA Jun,et al. Diagnostic value of 64-slice spiral CT for nodular goiter[J].Chinese Journal of Medical Physics,2018,35(7):303.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.011]
[3]何重阳,文明.CT在外突性子宫肌瘤与卵巢性索间质肿瘤的鉴别诊断价值[J].中国医学物理学杂志,2020,37(5):589.[doi:10.3969/j.issn.1005-202X.2020.05.011]
 HE Chongyang,WEN Ming.Diagnostic value of CT in outprojecting uterine leiomyoma and ovarian sex cord-stromal tumor[J].Chinese Journal of Medical Physics,2020,37(7):589.[doi:10.3969/j.issn.1005-202X.2020.05.011]
[4]黄勃,王志.后踝撞击综合征MRI和CT诊断价值分析[J].中国医学物理学杂志,2020,37(6):730.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.014]
 HUANG Bo,WANG Zhi.Diagnostic values of MRI and CT in posterior ankle impingement syndrome[J].Chinese Journal of Medical Physics,2020,37(7):730.[doi:DOI:10.3969/j.issn.1005-202X.2020.06.014]
[5]李娜,曾珉,刘俊宏.脑利钠肽水平联合肺动脉CT评估老年心力衰竭患者预后的价值[J].中国医学物理学杂志,2021,38(9):1119.[doi:10.3969/j.issn.1005-202X.2021.09.013]
 LI Na,ZENG Min,LIU Junhong.Value of brain natriuretic peptide level combined with pulmonary artery CT in evaluating theprognosis of elderly patients with heart failure[J].Chinese Journal of Medical Physics,2021,38(7):1119.[doi:10.3969/j.issn.1005-202X.2021.09.013]
[6]周美君,朱晟.高频超声与CT在良恶性浅表淋巴结鉴别诊断中的应用价值[J].中国医学物理学杂志,2022,39(4):464.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.013]
 ZHOU Meijun,ZHU Sheng.Value of high-frequency ultrasound and CT in the differential diagnosis of benign and malignant superficial lymph node lesions[J].Chinese Journal of Medical Physics,2022,39(7):464.[doi:DOI:10.3969/j.issn.1005-202X.2022.04.013]
[7]郭艺,杜秋晨,吴朦朦,等.基于轻量级神经网络的新冠肺炎CT新型识别技术[J].中国医学物理学杂志,2022,39(10):1263.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.014]
 GUO Yi,DU Qiuchen,WU Mengmeng,et al.COVID-19 recognition technology based on lightweight neural network[J].Chinese Journal of Medical Physics,2022,39(7):1263.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.014]
[8]乔文俊,周芳,刘泉芬,等.深度学习图像重建算法对改善直肠CT图像质量的临床应用价值[J].中国医学物理学杂志,2024,41(8):975.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.008]
 QIAO Wenjun,ZHOU Fang,et al.Improving rectal CT image quality with a deep learning image reconstruction algorithm[J].Chinese Journal of Medical Physics,2024,41(7):975.[doi:DOI:10.3969/j.issn.1005-202X.2024.08.008]

备注/Memo

备注/Memo:
【收稿日期】2021-02-19 【基金项目】桂林市科学研究与技术开发计划项目(20170109-6) 【作者简介】刘胜,副主任医师,E-mail: wh652408@163.com
更新日期/Last Update: 2021-07-26