[1]吴雪,王娆芬.基于迁移学习的深层卷积神经网络心电信号疲劳分类[J].中国医学物理学杂志,2021,38(10):1258-1263.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.013]
 WU Xue,WANG Raofen.Classification of fatigue state using ECG signals and DCNN with transfer learning[J].Chinese Journal of Medical Physics,2021,38(10):1258-1263.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.013]
点击复制

基于迁移学习的深层卷积神经网络心电信号疲劳分类()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第10期
页码:
1258-1263
栏目:
医学信号处理与医学仪器
出版日期:
2021-10-27

文章信息/Info

Title:
Classification of fatigue state using ECG signals and DCNN with transfer learning
文章编号:
1005-202X(2021)10-1258-06
作者:
吴雪王娆芬
上海工程技术大学电子电气工程学院, 上海 201620
Author(s):
WU Xue WANG Raofen
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
关键词:
迁移学习短时心电信号疲劳分类二维图像深层卷积神经网络
Keywords:
Keywords: transfer learning short-term electrocardiogram signal fatigue classification two-dimensional image deep convolution neural network
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2021.10.013
文献标志码:
A
摘要:
传统的心电疲劳分类方法虽然能有效地识别疲劳状态,但需要采集较长时间的信号,不能达到疲劳状态的实时监测。本文设计一种深层卷积神经网络模型用于评估操作员疲劳状态,对操作员的短时心电信号进行疲劳状态的自动分类。首先,提出一种将心电信号转化为图像的方法,将采集到的心电信号转化成二维图像,即将心电信号直接映射到二维空间转换成时域图片信息。然后,将图片送入深层卷积神经网络模型中去训练,实现对操作员疲劳状态的分类。本文方法降低了模型的复杂性,减少了模型的参数,同时训练的数据不需要经过类似噪声滤波、特征提取等任何预处理步骤。结果表明该模型能自动从心电信号中提取有效特征,实现对操作员非疲劳和疲劳两种状态的正确分类,分类准确率达到97.36%。
Abstract:
Abstract: Although the traditional fatigue classification method based on electrocardiogram (ECG) signals can effectively identify fatigue state, it needs to acquire long-term ECG signals and cannot achieve the real-time monitoring of the fatigue state. A deep convolutional neural network is designed for evaluating the fatigue state of the operator, and automatically classifying the fatigue state based on the short-term ECG signals. A method of converting the ECG signals into an images are firstly proposed for converting the acquired ECG signals into a two-dimensional image, which means that the ECG signals are directly mapped to the two-dimensional space and converted into time-domain image information. Then the images are sent to deep convolutional neural network model for training, thereby realizing the classification of fatigue state. The proposed method decreases the complexity of the model and reduces the parameters of the model, and meanwhile, the training data does not need any preprocessing such as noise filtering and feature extraction steps. The results show that the proposed model can automatically extract effective features from the ECG signals, and realize the correct classification of the non-fatigue and fatigue states of the operator, achieving a classification accuracy up to 97.36%.

相似文献/References:

[1]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(10):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[2]芮迎迎,孔祥勇,刘亚楠,等.基于Mask Scoring R-CNN的齿痕舌象识别[J].中国医学物理学杂志,2021,38(4):523.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.023]
 RUI Yingying,KONG Xiangyong,LIU Yanan,et al.Tooth-marked tongue recognition using Mask Scoring R-CNN[J].Chinese Journal of Medical Physics,2021,38(10):523.[doi:DOI:10.3969/j.issn.1005-202X.2021.04.023]
[3]吴雪,王娆芬.基于1D-ECNN的短时心电信号疲劳分类[J].中国医学物理学杂志,2021,38(9):1136.[doi:10.3969/j.issn.1005-202X.2021.09.016]
 WU Xue,WANG Raofen.Classification of fatigue states based on short-term ECG signal and 1D-ECNN[J].Chinese Journal of Medical Physics,2021,38(10):1136.[doi:10.3969/j.issn.1005-202X.2021.09.016]
[4]赵清一,林勇.基于迁移学习和支持向量机的乳腺癌分子分型预测[J].中国医学物理学杂志,2022,39(5):635.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.019]
 ZHAO Qingyi,LIN Yong.Breast cancer molecular typing prediction based on transfer learning and support vector machine[J].Chinese Journal of Medical Physics,2022,39(10):635.[doi:DOI:10.3969/j.issn.1005-202X.2022.05.019]
[5]冀常鹏,杨梦晗,代巍.基于改进Faster RCNN的舌部多纹理检测[J].中国医学物理学杂志,2023,40(8):977.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.009]
 JI Changpeng,YANG Menghan,DAI Wei.Tongue multi-texture recognition using improved Faster RCNN[J].Chinese Journal of Medical Physics,2023,40(10):977.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.009]
[6]吴书裕,周露,王琳婧,等.基于BIRADs多任务学习模型的乳腺肿块分类[J].中国医学物理学杂志,2023,40(10):1220.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.005]
 WU Shuyu,ZHOU Lu,WANG Linjing,et al.Breast mass classification based on BIRADs multi-task learning model[J].Chinese Journal of Medical Physics,2023,40(10):1220.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.005]
[7]郭朝晖,王瑜,马慧鋆,等.基于迁移学习和3D-WGMobileNet的青年抑郁症辅助诊断[J].中国医学物理学杂志,2024,41(4):455.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.010]
 GUO Zhaohui,WANG Yu,MA Huijun,et al.Diagnosis of youth depression based on transfer learning and 3D-WGMobileNet[J].Chinese Journal of Medical Physics,2024,41(10):455.[doi:DOI:10.3969/j.issn.1005-202X.2024.04.010]

备注/Memo

备注/Memo:
【收稿日期】2020-10-15 【基金项目】国家自然科学基金(61803255);上海市自然科学基金(18ZR1416700) 【作者简介】吴雪,硕士,研究方向:生理信号处理和模式识别,E-mail: 445246971@qq.com 【通信作者】王娆芬,博士,副教授,研究方向:智能建模、生理信号分析及疲劳识别等,E-mail: rfwangsues@163.com
更新日期/Last Update: 2021-10-29