[1]曹洋森,朱晓斐,韩妙飞,等.基于级联式深度网络模型的胃及胰腺自动分割研究[J].中国医学物理学杂志,2021,38(8):971-974.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.010]
 CAO Yangsen,ZHU Xiaofei,HAN Miaofei,et al.Automatic segmentation of the stomach and pancreas using cascaded deep convolutional neural network[J].Chinese Journal of Medical Physics,2021,38(8):971-974.[doi:DOI:10.3969/j.issn.1005-202X.2021.08.010]
点击复制

基于级联式深度网络模型的胃及胰腺自动分割研究()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第8期
页码:
971-974
栏目:
医学影像物理
出版日期:
2021-08-02

文章信息/Info

Title:
Automatic segmentation of the stomach and pancreas using cascaded deep convolutional neural network
文章编号:
1005-202X(2021)08-0971-04
作者:
曹洋森1朱晓斐1韩妙飞2卢明智1高耀宗2顾蕾1于春山1孙永健1张火俊1
1.海军军医大学附属长海医院放疗科, 上海 200433; 2.上海联影智能医疗科技有限公司, 上海 200232
Author(s):
CAO Yangsen1 ZHU Xiaofei1 HAN Miaofei2 LU Mingzhi1 GAO Yaozong2 GU Lei1 YU Chunshan1 SUN Yongjian1 ZHANG Huojun1
1. Department of Radiation Oncology, Changhai Hospital of Naval Medical University, Shanghai 200433, China 2. Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
关键词:
深度学习卷积神经网络自动分割人工智能胰腺
Keywords:
Keywords: deep learning convolutional neural network automatic segmentation artificial intelligence stomach pancreas
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2021.08.010
文献标志码:
A
摘要:
目的:旨在研究自主创新设计的级联式深度卷积神经网络VB-Net在胃和胰腺上的自动分割精度及效率。方法:回顾分析150例胰腺癌患者临床资料,随机选取132例非增强CT数据和其中116例胰腺期增强CT以及结构数据进行胃及胰腺的分割模型训练。对剩余18例患者的非增强CT和胰腺期增强CT给予模型测试,使用戴斯相似性系数量化分析模型的分割精度,同时评估其分割效率。结果:基于非增强CT的胃、胰腺的自动分割平均DSC值分别为87.93%、80.05%;基于胰腺期增强CT的胃、胰腺自动分割平均DSC值分别为89.71%、84.79%。胃及胰腺的自动分割平均时间为1.22、0.84 s,手动分割平均时间为158.70、115.52 s。结论:基于VB-Net的胃及胰腺自动分割模型测试结果较为准确,且极大提高了器官分割的效率。
Abstract:
Abstract: Objective To analyze the accuracy and efficiency of self-developed cascaded deep convolutional neural network (VB-Net) in the automatic segmentation of the stomach and pancreas. Methods The clinical data of 150 patients with pancreatic cancer were analyzed retrospectively. The non-enhanced CT data of 132 cases and the pancreas contrast-enhanced CT and structure data of 116 cases among the 132 cases were randomly chosen as training set for training the model for segmentation of the stomach and pancreas. The non-enhanced CT data and pancreas contrast-enhanced CT data of the other 18 cases were regarded as test set for evaluating the performance of the proposed method. Finally, Dice similarity coefficient was used to quantitatively analyze segmentation accuracy and segmentation efficiency was also evaluated. Results The average Dice similarity coefficients of the automatic segmentation of the stomach and pancreas were 87.93% and 80.05% on non-enhanced CT, 89.71% and 84.79% on pancreas contrast-enhanced CT, respectively. The average automatic segmentation time of the stomach and pancreas was 1.22 s and 0.84 s, while the average manual segmentation time was 158.7 s and 115.52 s. Conclusion The VB-Net based method for the automatic segmentation of the stomach and pancreas can achieve an accurate segmentation results, and significantly improve organs segmentation efficiency.

相似文献/References:

[1]刘岩,李幼军,陈萌. 基于固有模态分解和深度学习的抑郁症脑电信号分类分析[J].中国医学物理学杂志,2017,34(9):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
 [J].Chinese Journal of Medical Physics,2017,34(8):963.[doi:DOI:10.3969/j.issn.1005-202X.2017.09.021]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(8):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]张俊,朱金汉,庄永东,等. 基于卷积神经网络CT/CBCT影像质量自动分析[J].中国医学物理学杂志,2018,35(5):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
 ZHANG Jun,ZHU Jinhan,ZHUANG Yongdong,et al. Automatic analysis of CT/CBCT image quality based on convolutional neural network[J].Chinese Journal of Medical Physics,2018,35(8):557.[doi:DOI:10.3969/j.issn.1005-202X.2018.05.012]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(8):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]申代友,库洪安,皮红英,等. 基于深度相机的老年跌倒监护系统[J].中国医学物理学杂志,2019,36(2):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
 SHEN Daiyou,KU Hongan,PI Hongying,et al. Depth camera-based fall detection system for the elderly[J].Chinese Journal of Medical Physics,2019,36(8):223.[doi:DOI:10.3969/j.issn.1005-202X.2019.02.019]
[6]王自强,刘洪运,石金龙,等.基于卷积神经网络的心电图心博识别[J].中国医学物理学杂志,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
 WANG Ziqiang,LIU Hongyun,SHI Jinlong,et al.ECG heartbeat recognition based on convolution neural network[J].Chinese Journal of Medical Physics,2019,36(8):938.[doi:DOI:10.3969/j.issn.1005-202X.2019.08.015]
[7]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(8):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[8]纪春阳,徐秀林,王燕. 深度神经网络技术在肿瘤细胞识别中的应用[J].中国医学物理学杂志,2019,36(9):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
 JI Chunyang,XU Xiulin,WANG Yan. Application of deep neural network in tumor cell recognition[J].Chinese Journal of Medical Physics,2019,36(8):1113.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.022]
[9]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(8):1486.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
[10]蒋家良,罗勇,何奕松,等.特征区域再聚焦提升全卷积神经网络勾画较小靶区准确度[J].中国医学物理学杂志,2020,37(1):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
 JIANG Jialiang,LUO Yong,HE Yisong,et al.Feature area refocusing for improving the accuracy of small target area segmentations by fully convolutional networks[J].Chinese Journal of Medical Physics,2020,37(8):75.[doi:DOI:10.3969/j.issn.1005-202X.2020.01.015]
[11]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(8):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[12]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(8):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[13]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[14]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(8):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[15]薛湛琦,王远军.基于深度学习的多模态医学图像融合方法研究进展[J].中国医学物理学杂志,2020,37(5):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]
 XUE Zhanqi,WANG Yuanjun.Advances in multimodal medical image fusion method based on deep learning[J].Chinese Journal of Medical Physics,2020,37(8):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]
[16]董国亚,宋立明,李雅芬,等.基于深度学习的跨模态医学图像转换[J].中国医学物理学杂志,2020,37(10):1335.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.021]
 DONG Guoya,SONG Liming,et al.Cross-modality medical image synthesis based on deep learning[J].Chinese Journal of Medical Physics,2020,37(8):1335.[doi:DOI:10.3969/j.issn.1005-202X.2020.10.021]
[17]王乾梁,石宏理.基于改进YOLO V3的肺结节检测方法[J].中国医学物理学杂志,2021,38(9):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
 WANG Qianliang,SHI Hongli,et al.Pulmonary nodule detection based on improved YOLO V3[J].Chinese Journal of Medical Physics,2021,38(8):1179.[doi:10.3969/j.issn.1005-202X.2021.09.024]
[18]张新阳,贺鹏博,刘新国,等.基于深度学习单投影的CT断层成像三维重建[J].中国医学物理学杂志,2021,38(10):1223.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.008]
 ZHANG Xinyang,,et al.Deep learning-based 3D reconstruction of CT tomography from a single projection[J].Chinese Journal of Medical Physics,2021,38(8):1223.[doi:DOI:10.3969/j.issn.1005-202X.2021.10.008]
[19]曹莉凌,蒋坷宏,曹守启,等.基于深度学习的甲状腺癌病理图像分级方法[J].中国医学物理学杂志,2023,40(5):580.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.010]
 CAO Liling,JIANG Kehong,CAO Shouqi,et al.Automatic grading of pathological images of thyroid cancer based on deep learning[J].Chinese Journal of Medical Physics,2023,40(8):580.[doi:DOI:10.3969/j.issn.1005-202X.2023.05.010]
[20]方东申,叶琪瑶,石少波,等.基于心电长时RR间期序列的心房颤动检测[J].中国医学物理学杂志,2023,40(8):1009.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.014]
 FANG Dongshen,YE Qiyao,SHI Shaobo,et al.Atrial fibrillation detection based on long-term RR interval sequences of electrocardiogram[J].Chinese Journal of Medical Physics,2023,40(8):1009.[doi:DOI:10.3969/j.issn.1005-202X.2023.08.014]

备注/Memo

备注/Memo:
【收稿日期】2021-02-15 【基金项目】上海申康临床“五新”创新研发项目(SHDC2020CR3087B) 【作者简介】曹洋森,硕士,主管技师,研究方向:肿瘤放射物理,E-mail: caoyangsen@163.com 【通信作者】张火俊,博士,主任医师,研究方向:恶性肿瘤的射波刀治疗、立体定向放疗、放射介入综合治疗及影像诊断,E-mail: chyyzhj@163.com
更新日期/Last Update: 2021-07-31