[1]时飞跃,王敏,赵紫婷,等.基于深度学习的rtStation软件自动勾画乳腺癌术后患者心脏结构的应用分析[J].中国医学物理学杂志,2021,38(6):661-665.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.001]
 SHI Feiyue,WANG Min,et al.Application analysis of deep learning-based rtStation software in automatic delineation of the heart in patients after surgery for breast cancer[J].Chinese Journal of Medical Physics,2021,38(6):661-665.[doi:DOI:10.3969/j.issn.1005-202X.2021.06.001]
点击复制

基于深度学习的rtStation软件自动勾画乳腺癌术后患者心脏结构的应用分析()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第6期
页码:
661-665
栏目:
医学放射物理
出版日期:
2021-06-29

文章信息/Info

Title:
Application analysis of deep learning-based rtStation software in automatic delineation of the heart in patients after surgery for breast cancer
文章编号:
1005-202X(2021)06-0661-05
作者:
时飞跃12王敏1赵紫婷3秦伟1赵环宇1魏晓为1
1.南京医科大学附属南京医院(南京市第一医院)肿瘤放疗中心, 江苏 南京 210006; 2.南京医科大学医学物理研究中心, 江苏 南京 210029; 3.南京医科大学附属南京医院(南京市第一医院)医疗设备处, 江苏 南京 210006
Author(s):
SHI Feiyue1 2 WANG Min1 ZHAO Ziting3 QIN Wei1 ZHAO Huanyu1 WEI Xiaowei1
1. Radiation Therapy Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China 2. Research Center of Medical Physics, Nanjing Medical University, Nanjing 210029, China 3. Department of Medical Equipment, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
关键词:
乳腺癌rtStation自动勾画深度学习心脏
Keywords:
Keywords: breast cancer rtStation automatic delineation deep learning heart
分类号:
R312;R811
DOI:
DOI:10.3969/j.issn.1005-202X.2021.06.001
文献标志码:
A
摘要:
【摘要】目的:使用基于深度学习的rtStation软件对乳腺癌术后患者的心脏结构进行自动勾画,对自动勾画的准确性进行测试和评估。方法:选取40例乳腺癌术后患者进行研究,分为左侧保乳(LB)组、右侧保乳(RB)组、左侧根治(LG)组和右侧根治(RG)组。首先将放疗定位CT图像传输至rtStation软件,使用该软件自动勾画各病例心脏结构,最后将勾画好的结构文件导回Eclipse治疗计划系统。计算两种勾画方法的体积差异(△V%)、位置差异(DC)和形状一致性(DSC)数据,评估该软件自动勾画心脏结构的准确性。结果:40例测试结果△V%、DC和DSC分别为(3.49±10.30)%、(0.48±0.30) cm、0.89±0.04。4组的DSC值分别为0.88±0.03(LB)、0.89±0.03(RB)、0.88±0.05(LG)、0.89±0.04(RG)。4个组合组的DSC值分别为0.89±0.03(LB+RB)、0.88±0.04 (LG+RG)、0.88±0.04 (LB+LG)、0.89±0.03(RB+RG)。统计学分析结果显示,LB、RB、LG、RG 4组的ΔV%、DC、DSC值没有统计学差异(P>0.05),LB+RB和LG+RG两组的ΔV%、DC、DSC值没有统计学差异(P>0.05),LB+LG和RB+RG两组的ΔV%、DC、DSC值没有统计学差异(P>0.05)。结论:对于不同类型的乳腺癌术后患者,使用rtStation软件自动勾画心脏结构,均可以达到较为准确的效果,且不同类型之间的结果没有统计学差异。
Abstract:
Abstract: Objective To test and evaluate the accuracy of rtStation software based on deep learning for automatic delineation of the heart in patients after surgery for breast cancer. Methods Forty patients after surgery for breast cancer were enrolled in the study, and then divided into 4 groups, namely left breast conserving surgery (LB) group, right breast conserving surgery (RB) group, left radical mastectomy (LG) group and right radical mastectomy (RG) group. After that the CT images for localization were transferred to rtStation software, the heart was automatically delineated by rtStation software for each patient, and the obtained structure files were transferred back to Eclipse treatment planning system. The volume difference (ΔV%), deviation of centroid (DC) and Dice similarity coefficient (DSC) between automatic delineation and manual delineation were calculated for evaluating the accuracy of automatic heart delineation using rtStation software. Results The ΔV%, DC and DSC of the 40 patients were (3.49±10.30)%, (0.48±0.30) cm and 0.89±0.04 respectively. The DSC of the 4 groups were 0.88±0.03 (LB), 0.89±0.03 (RB), 0.88±0.05 (LG) and 0.89±0.04 (RG), respectively and that of 4 combination groups were 0.89±0.03 (LB+RB), 0.88±0.04 (LG+RG), 0.88±0.04 (LB+LG) and 0.89±0.03 (RB+RG), respectively. The statistical analysis results showed that no statistical difference was found in ΔV%, DC and DSC among LB, RB, LG and RG groups (P>0.05), between LB+RB group and LG+RG group (P>0.05), and between LB+LG group and RB+RG group (P>0.05). Conclusion For postoperative patients with different types of breast cancer, using rtStation software to automatically delineate the heart can achieve accurate delineation results, and there is no statistical difference in delineation accuracy among different groups.

相似文献/References:

[1]柏 晗,王 丽,刘旭红,等.左乳腺5种不同主野分布IMRT计划的剂量比较分析[J].中国医学物理学杂志,2015,32(02):210.[doi:10.3969/j.issn.1005-202X.2015.02.013]
[2]张晋建,黎 静,文 婷,等.Arc CHECK在乳腺癌螺旋断层放疗计划剂量验证中的应用[J].中国医学物理学杂志,2015,32(02):244.[doi:10.3969/j.issn.1005-202X.2015.02.021]
[3]白 雪,杜向慧,王升晔,等.半野技术结合非共面照射技术在乳腺癌胸锁联合照射中的应用[J].中国医学物理学杂志,2014,31(03):4849.[doi:10.3969/j.issn.1005-202X.2014.03.001]
[4]赵永亮,储开岳,吴建亭,等.两种不同调强技术配合主动呼吸控制系统在乳腺癌放疗中的比较[J].中国医学物理学杂志,2014,31(03):4862.[doi:10.3969/j.issn.1005-202X.2014.03.004]
[5]花威,张西志,张先稳,等.RapidArc在乳腺癌术后放疗中的应用[J].中国医学物理学杂志,2013,30(02):3984.[doi:10.3969/j.issn.1005-202X.2013.02.005]
[6]徐金济,成俊,李伟,等.左侧乳腺癌改良根治术后逆向调强放射治疗的摆位误差分析[J].中国医学物理学杂志,2013,30(05):4358.[doi:10.3969/j.issn.1005-202X.2013.05.004]
[7]孟慧鹏,孙小喆,孙劲松,等.右乳腺癌术后放疗中VMAT和dIMRT的剂量学比较[J].中国医学物理学杂志,2013,30(05):4387.[doi:10.3969/j.issn.1005-202X.2013.05.011]
[8]刘旭红,陈晓,艾毅钦,等.早期左乳腺癌保乳术后仰卧位和俯卧位照射剂量学比较与分析[J].中国医学物理学杂志,2015,32(05):737.[doi:doi:10.3969/j.issn.1005-202X.2015.05.028]
 [J].Chinese Journal of Medical Physics,2015,32(6):737.[doi:doi:10.3969/j.issn.1005-202X.2015.05.028]
[9]张艺宝,吴昊,李莎,等.临床前验证与几何对比分析基于图谱库的危及器官自动勾画[J].中国医学物理学杂志,2015,32(06):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]
 [J].Chinese Journal of Medical Physics,2015,32(6):761.[doi:doi:10.3969/j.issn.1005-202X.2015.06.001]
[10]段云龙,杨涛,曲宝林,等.乳腺癌保乳切线野三维适形、切线野正向调强及逆向调强放疗的剂量学评估[J].中国医学物理学杂志,2015,32(06):841.[doi:doi:10.3969/j.issn.1005-202X.2015.06.017]
 [J].Chinese Journal of Medical Physics,2015,32(6):841.[doi:doi:10.3969/j.issn.1005-202X.2015.06.017]

备注/Memo

备注/Memo:
【收稿日期】2021-03-15 【基金项目】国家自然科学基金(81773240);江苏省自然科学基金(BK20181118) 【作者简介】时飞跃,研究方向:肿瘤放射物理,E-mail: shifeiyue2013@126.com 【通信作者】魏晓为,副主任医师,研究方向:肿瘤放疗增敏,E-mail: gswxw@126.com
更新日期/Last Update: 2021-06-29