[1]余行,刘欢,傅玉川.放疗影像自动分割效果评估中几何参数与剂量学参数之间的关联性[J].中国医学物理学杂志,2021,38(5):540-544.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
 YU Hang,LIU Huan,FU Yuchuan.Correlation between geometric parameters and dosimetric parameters in the evaluation of image auto-segmentation for radiotherapy[J].Chinese Journal of Medical Physics,2021,38(5):540-544.[doi:DOI:10.3969/j.issn.1005-202X.2021.05.003]
点击复制

放疗影像自动分割效果评估中几何参数与剂量学参数之间的关联性()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第5期
页码:
540-544
栏目:
医学放射物理
出版日期:
2021-05-01

文章信息/Info

Title:
Correlation between geometric parameters and dosimetric parameters in the evaluation of image auto-segmentation for radiotherapy
文章编号:
1005-202X(2021)05-0540-05
作者:
余行刘欢傅玉川
四川大学华西医院放疗科, 四川 成都 610041
Author(s):
YU Hang LIU Huan FU Yuchuan
Department of Radiotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
关键词:
放射治疗自动分割几何参数剂量学参数
Keywords:
Keywords: radiotherapy auto-segmentation geometric parameter dosimetric parameter
分类号:
R318
DOI:
DOI:10.3969/j.issn.1005-202X.2021.05.003
文献标志码:
A
摘要:
目的:通过分析感兴趣区域(ROI)的几何参数与剂量学参数之间的关联性,探讨放疗影像自动分割效果评估时联合使用几何参数与剂量学参数的必要性。方法:利用卷积神经网络构建的分割模型对18例宫颈癌术后患者的危及器官与靶区进行自动分割,把自动分割结果与医生手动勾画结果进行比较,用于评估的几何参数包括基于体积/面积的Dice相似性系数、相对体积差与基于距离的几何参数:最大Hausdorff距离、95% Hausdorff距离、质心差,剂量学参数包括针对危及器官的平均剂量差、针对靶区的ΔD95和ΔD98。采用线性回归方法研究不同分割方式下ROI几何学参数与剂量学参数间的关系,并使用Spearman相关性分析获得几何参数间的相关性及医生勾画与自动分割间剂量学的相关性。结果:所有ROI的几何参数与剂量学参数间的关系均较弱(63.3%的R2<0.4)且不稳定;同时几何参数间的相关系数|r|不超过0.625,互为弱相关或不相关。结论:在对放疗领域的图像分割结果进行评估时,应该同时考虑到几何参数与剂量学参数。选择几何参数时,应联合基于面积/体积的评估方式与基于距离的评估方式。
Abstract:
Abstract: Objective To investigate and discuss the necessity of combining geometric parameters and dosimetric parameters in the evaluation of image auto-segmentation for radiotherapy by analyzing the relationship between geometric parameters and dosimetric parameters of regions of interest (ROI). Methods An auto-segmentation model established by convolutional neural network was used for the auto-segmentation of organs-at-risk and target areas for 18 patients who received postoperative radiotherapy for cervical cancer, and then the auto-segmentation results were compared with manual segmentation results. The geometric parameters used for evaluation included volume/area-based parameters (Dice similarity coefficient, relative volume difference) and distance-based parameters (maximum Hausdorff distance, 95% Hausdorff distance, centroid difference), while the dosimetric parameters used for evaluation included the average dose difference for organs-at-risk, as well as the ΔD95 and ΔD98 for target area. The relationships between geometric parameters and dosimetric parameters of ROI under different segmentation methods were analyzed by linear regression method and the correlation between geometric parameters and the dosimetric correlation between manual segmentation and automatic segmentation were obtained by Spearman correlation analysis. Results The relationship between geometric parameters and dosimetric parameters of all ROI was weak (63.3% of R2<0.4) and unstable and meanwhile, the correlation coefficient |r| between geometric parameters did not exceed 0.625, indicating weakly correlated or not correlated with each other. Conclusion Both geometric parameters and dosimetric parameters should be concerned when evaluating the results of image segmentation for radiotherapy, and the combination of area/volume-based evaluation method and distance-based evaluation method should be used for the selection of geometric parameters.

相似文献/References:

[1]武 杰,袁杭英,欧阳蓓蕾.内旋式放射治疗用面罩固定装置的设计[J].中国医学物理学杂志,2015,32(02):265.[doi:10.3969/j.issn.1005-202X.2015.02.027]
[2]司 森,吴鑫全,包尚联,等.基于GPU的蒙特卡洛放疗剂量模拟[J].中国医学物理学杂志,2015,32(01):1.[doi:10.3969/j.issn.1005-202X.2015.01.001]
[3]王 文,程梦云,杨 琪,等.基于MCNP源子程序的放射治疗剂量计算验证方法[J].中国医学物理学杂志,2015,32(01):13.[doi:10.3969/j.issn.1005-202X.2015.01.004]
[4]张一戈,邱小平,陈维军,等.基于图像引导技术对头颈部肿瘤临床摆位误差的剂量学影响[J].中国医学物理学杂志,2015,32(01):25.[doi:10.3969/j.issn.1005-202X.2015.01.007]
[5]孟慧鹏,孙小喆,王 昊,等.胸部偏后背肿瘤RapidArc采用仰卧位设计治疗计划的可行性分析[J].中国医学物理学杂志,2015,32(01):31.[doi:10.3969/j.issn.1005-202X.2015.01.008]
[6]庞皓文,孙小扬.基于快速自由形变的弹性配准算法在放疗CT中的应用[J].中国医学物理学杂志,2015,32(03):404.[doi:10.3969/j.issn.1005-202X.2015.03.023]
[7]贾卫娟,周一兵,谭维维,等.利用模拟机及挡铅托架进行放疗前的治疗模拟[J].中国医学物理学杂志,2014,31(01):4622.[doi:10.3969/j.issn.1005-202X.2014.01.007]
[8]白 雪,杜向慧,王升晔,等.半野技术结合非共面照射技术在乳腺癌胸锁联合照射中的应用[J].中国医学物理学杂志,2014,31(03):4849.[doi:10.3969/j.issn.1005-202X.2014.03.001]
[9]周 钢,田 野,陆雪官,等.乳腺癌保乳术后三种瘤床同期加量放疗技术的剂量学比较[J].中国医学物理学杂志,2014,31(03):4853.[doi:10.3969/j.issn.1005-202X.2014.03.002]
[10]李贤富,谢 力,郭飞,等.医科达Precise直线加速器快速应急处理方法探讨[J].中国医学物理学杂志,2014,31(04):4984.[doi:10.3969/j.issn.1005-202X.2014.04.003]
[11]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(5):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[12]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(5):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[13]张富利,王雅棣,王秋生.放射治疗中医学图像自动分割的研究进展[J].中国医学物理学杂志,2021,38(9):1108.[doi:10.3969/j.issn.1005-202X.2021.09.011]
 ZHANG Fuli,WANG Yadi,WANG Qiusheng.Advances in automatic segmentation of medical images in radiotherapy[J].Chinese Journal of Medical Physics,2021,38(5):1108.[doi:10.3969/j.issn.1005-202X.2021.09.011]

备注/Memo

备注/Memo:
【收稿日期】2021-01-08 【基金项目】四川省科技计划重点研发项目(2020YFS0274) 【作者简介】余行,硕士,技师,研究方向:医学物理,E-mail: 506640120@qq.com 【通信作者】傅玉川,博士,主任技师,研究方向:医学物理,E-mail: ychfu@hotmail.com
更新日期/Last Update: 2021-05-31