[1]薛彩强,柯晓艾,邓娟,等.MRI征象鉴别IDH-1突变型与野生型较低级别胶质瘤[J].中国医学物理学杂志,2020,37(11):1384-1388.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.008]
 XUE Caiqiang,,et al.MRI signs in differentiation of IDH-1 mutant type and wild type of lower-grade gliomas[J].Chinese Journal of Medical Physics,2020,37(11):1384-1388.[doi:DOI:10.3969/j.issn.1005-202X.2020.11.008]
点击复制

MRI征象鉴别IDH-1突变型与野生型较低级别胶质瘤()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第11期
页码:
1384-1388
栏目:
医学影像物理
出版日期:
2020-12-02

文章信息/Info

Title:
MRI signs in differentiation of IDH-1 mutant type and wild type of lower-grade gliomas
文章编号:
1005-202X(2020)11-1384-05
作者:
薛彩强123柯晓艾123邓娟123李昇霖123刘显旺123周俊林123
1.兰州大学第二医院放射科, 甘肃 兰州 730030; 2.兰州大学第二临床医学院, 甘肃 兰州 730030; 3.甘肃省医学影像重点实验室, 甘肃 兰州 730030
Author(s):
XUE Caiqiang1 2 3 KE Xiaoai1 2 3 DENG Juan1 2 3 LI Shenglin1 2 3 LIU Xianwang1 2 3 ZHOU Junlin1 2 3
1. Department of Radiotherapy, Second Hospital affiliated to Lanzhou University, Lanzhou 730030, China 2. Second Clinical School, Lanzhou Universty, Lanzhou 730030, China 3. Gansu Provincial Key Laboratory of Medical Imaging, Lanzhou 730030, China
关键词:
脑肿瘤较低级别胶质瘤异柠檬酸脱氢酶-1磁共振成像
Keywords:
Keywords: brain tumor lower-grade gliomas isocitrate dehydrogenase-1 magnetic resonance imaging
分类号:
R814.4
DOI:
DOI:10.3969/j.issn.1005-202X.2020.11.008
文献标志码:
A
摘要:
目的:对比分析较低级别胶质瘤WHO Ⅱ~Ⅲ级异柠檬酸脱氢酶-1(IDH-1)突变型与野生型MRI征象。方法:回顾性分析手术及病理证实的69例较低级别胶质瘤患者的临床、MRI征象及分子病理资料,所有病例均行T1WI、T2WI、FLAIR及T1WI增强序列扫描。对肿瘤的发病性别、年龄、位置、病变数目、肿瘤直径、囊变坏死、肿瘤边界、出血、瘤周水肿、是否跨越中线、强化程度等征象及指标进行统计学分析。结果:较低级别胶质瘤IDH-1突变型与野生型在肿瘤位置方面差异具有统计学意义(P<0.05),IDH-1突变型比野生型更好发于额叶;IDH-1突变型强化程度为轻度强化、中度强化、重度强化分别占比83%、14%、3%,野生型分别占比41%、44%、15%,差异具有统计学意义(P<0.05);IDH-1突变型坏死最大径大于野生型,差异具有统计学意义(P<0.05)。两组间患者发病年龄及性别、病变个数、肿瘤边界、是否跨越中线、有无出血、水肿最大径、囊变最大径、坏死最大径等差异无统计学意义(P>0.05)。结论:较低级别胶质瘤的位置、强化程度、坏死最大直径对于术前评估IDH-1的突变状态具有重要价值。
Abstract:
Abstract: Objective To compare and analyze the MRI signs of isocitrate dehydrogenase-1 mutant and wild-type of lower-grade gliomas (WHO Ⅱ-Ⅲ). Methods The clinical and MRI signs and molecular pathological data of 69 patients with lower-grade glioma confirmed by surgery and pathology were retrospectively analyzed. All cases were performed scans of T1WI, T2WI, FLAIR and T1WI enhanced sequence. The signs and indicators such as gender, age, location, number of lesions, tumor diameter, cystic necrosis, tumor border, hemorrhage, peritumoral edema, crossing of the midline, and degree of enhancement were statistically analyzed. Results The differences of tumor location between IDH-1 mutant and wild type in lower-grade gliomas was statistically significant (P<0.05). IDH-1 mutant was more commonly occurred in the frontal lobe than wild type. The enhancement degree of IDH-1 mutant consists of 83% of mild enhancement, 14% of moderate enhancement and 3% of severe enhancement, and the enhancement degree of wild type consists of 41%, 44%, and 15% respectively. Their differences were statistically significant (P<0.05). The maximum diameter of IDH-1 mutant necrosis was larger than that of wild type, and the difference was statistically significant (P<0.05). There were no statistically significant differences in the age of onset, gender, number of lesions, tumor boundaries, crossing of the midline, presence or absence of bleeding, maximum diameter of edema, maximum diameter of cystic change, and maximum diameter of necrosis (P>0.05). Conclusion The location, degree of enhancement, and maximum diameter of necrosis of lower-grade gliomas are of great value in evaluating the mutation status of IDH-1 before surgery.

相似文献/References:

[1]王晓飞,聂生东,王远军,等.基于MRI的脑肿瘤计算机辅助检测技术研究进展[J].中国医学物理学杂志,2014,31(01):4635.[doi:10.3969/j.issn.1005-202X.2014.01.010]
[2]万俊,聂生东,王远军,等.基于MRI的脑肿瘤分割技术研究进展[J].中国医学物理学杂志,2013,30(04):4266.[doi:10.3969/j.issn.1005-202X.2013.04.013]
[3]赖胜圣,刘虔铖,张刚平.基于模糊C均值自动随机游走算法在脑肿瘤分割中的应用[J].中国医学物理学杂志,2015,32(05):707.[doi:doi:10.3969/j.issn.1005-202X.2015.05.021]
[4]谷珊珊,张怀文,王运来.基于水平集稳健特征统计算法的脑肿瘤自动分割研究[J].中国医学物理学杂志,2016,33(1):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
 [J].Chinese Journal of Medical Physics,2016,33(11):63.[doi:10.3969/j.issn.1005-202X.2016.01.014]
[5]徐艳红,张晋建,黎静,等.影像增强剂对脑瘤螺旋断层放疗剂量计算的影响[J].中国医学物理学杂志,2016,33(8):757.[doi:10.3969/j.issn.1005-202X.2016.08.001]
 [J].Chinese Journal of Medical Physics,2016,33(11):757.[doi:10.3969/j.issn.1005-202X.2016.08.001]
[6]宋婷婷,盛晓芳,汪洋,等.Compass剂量验证系统在VMAT脑肿瘤瘤床同步追量中的应用[J].中国医学物理学杂志,2016,33(10):1012.[doi:10.3969/j.issn.1005-202X.2016.10.008]
 [J].Chinese Journal of Medical Physics,2016,33(11):1012.[doi:10.3969/j.issn.1005-202X.2016.10.008]
[7]方新林,方艳红,王迪.基于多模态特征融合的脑瘤图像分割方法[J].中国医学物理学杂志,2022,39(6):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
 FANG Xinlin,FANG Yanhong,WANG Di.Brain tumor image segmentation method based on multi-modal feature fusion[J].Chinese Journal of Medical Physics,2022,39(11):682.[doi:DOI:10.3969/j.issn.1005-202X.2022.06.005]
[8]王佳琦,崔勇,栾琨,等.双时相PET CT扫描在脑肿瘤的诊断价值[J].中国医学物理学杂志,2023,40(2):157.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.005]
 WANG Jiaqi,CUI Yong,LUAN Kun,et al.[J].Chinese Journal of Medical Physics,2023,40(11):157.[doi:DOI:10.3969/j.issn.1005-202X.2023.02.005]
[9]田恒屹,肖洪兵,计亚荣,等.基于三维UNet与混合焦点损失函数的脑肿瘤全自动分割算法[J].中国医学物理学杂志,2023,40(9):1114.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.009]
 TIAN Hengyi,XIAO Hongbing,JI Yarong,et al.Fully automatic segmentation algorithm of brain tumor based on three-dimensional UNet and hybrid focal loss function[J].Chinese Journal of Medical Physics,2023,40(11):1114.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.009]
[10]林嘉豪,王瑜,肖洪兵,等.LRAE-Unet:轻量级MRI脑肿瘤全自动分割网络[J].中国医学物理学杂志,2024,41(1):43.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.006]
 LIN Jiahao,WANG Yu,XIAO Hongbing,et al.LRAE-Unet: a lightweight network for fully automatic segmentation of brain tumor from MRI[J].Chinese Journal of Medical Physics,2024,41(11):43.[doi:DOI:10.3969/j.issn.1005-202X.2024.01.006]

备注/Memo

备注/Memo:
【收稿日期】2020-06-05 【基金项目】国家自然科学基金(81772006) 【作者简介】薛彩强,硕士研究生,研究方向:神经影像,E-mail: 11025- 99617@qq.com 【通信作者】周俊林,博士,主任医师,教授,研究方向:神经影像,E-mail: lzuzjl601@163.com
更新日期/Last Update: 2020-12-02