[1]叶冯颖,杨文敏,李尚青,等.计算机辅助诊断软件联合多学科建立甲状腺结节恶性风险预测模型[J].中国医学物理学杂志,2021,38(1):54-60.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.010]
 YE Fengying,YANG Wenmin,LI Shangqing,et al.A predictive model of thyroid nodules: based on the CAD software and multi-disciplinary indicators[J].Chinese Journal of Medical Physics,2021,38(1):54-60.[doi:DOI:10.3969/j.issn.1005-202X.2021.01.010]
点击复制

计算机辅助诊断软件联合多学科建立甲状腺结节恶性风险预测模型()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第1期
页码:
54-60
栏目:
医学影像物理
出版日期:
2021-01-29

文章信息/Info

Title:
A predictive model of thyroid nodules: based on the CAD software and multi-disciplinary indicators
文章编号:
1005-202X(2021)01-0054-07
作者:
叶冯颖1杨文敏1李尚青1苏淇琛1游剑虹2王康健3吕国荣14
1.福建医科大学附属第二医院超声科, 福建 泉州 362000; 2.厦门大学附属中山医院超声科, 福建 厦门 361004; 3.福建医科大学附属漳州市医院超声科, 福建 漳州 363000; 4.泉州医学高等专科学校母婴健康服务应用技术协同创新中心, 福建 泉州 362011
Author(s):
YE Fengying1 YANG Wenmin1 LI Shangqing1 SU Qichen1 YOU Jianhong2 WANG Kangjian3 LYU Guorong1 4
1. Department of Ultrasound, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China 2. Department of Ultrasound, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China 3. Department of Ultrasound, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China 4. Collaborative Innovation Center for Maternal and Infant Health Service Application Technology, Quanzhou 362011, China
关键词:
计算机辅助诊断甲状腺结节超声Logistics回归预测模型
Keywords:
Keywords: computer-aided diagnosis thyroid nodule ultrasonography logistic regression prediction model
分类号:
R318;R581
DOI:
DOI:10.3969/j.issn.1005-202X.2021.01.010
文献标志码:
A
摘要:
目的:应用计算机辅助诊断(CAD)软件量化分析甲状腺结节的超声特点,结合临床及实验室指标,建立甲状腺结节恶性风险预测模型,检测预测模型诊断效能并与不同年资医师诊断对比。方法:模型建立组多中心、前瞻性地纳入2019年1月~9月在福建医科大学附属第二医院、厦门大学附属中山医院、漳州市医院接受甲状腺手术及术前超声检查的364例患者(共388个结节),采用CAD软件分析超声图像。收集CAD软件图像分析信息、临床信息及实验室信息作为相关因素。以病理为金标准,对比21种相关因素的良恶性组间差别,筛选出组间差异具有统计学意义的11种相关因素进行Logistic回归分析,筛选出对结节良恶性预测有统计学意义的6种相关因素进行模型建立。模型验证组纳入同期于3所医院行甲状腺细针穿刺(FNA)及穿刺前检查的105例患者(共105个结节)。由预测模型及3位不同年资的医师分别判断结节良恶性,对照病理结果,绘制受试者工作曲线(ROC),计算曲线下面积(AUC)、敏感度、特异度、阳性预测值(PPV)、阴性预测值(NPV),对比预测模型与不同年资医师的诊断效能。结果:建立预测模型为Logit(p)=-5.218+2.601×(低回声指数)+1.981×(强回声指数)+3.079×(边缘模糊指数)+1.267×(纵横比>1)+0.614×(TSH)-0.071×(结节最大径)。计算可得模型的AUC为0.884,敏感度为85.50%,特异度为81.97%,PPV为91.1%,NPV为72.5%。预测模型的AUC、敏感度介于中、高年资医师间,特异度介于低、中年资医师间。结论:该模型具有较好的甲状腺结节恶性风险预测能力,可认为总体诊断效能介于中、高年资医师之间。
Abstract:
Abstract: Objective To quantitatively analyze the ultrasonic features of thyroid nodules using computer-aided diagnosis (CAD) software, to establish a predictive model of thyroid nodules based on CAD result, clinical information and laboratory indicators, and to compare the diagnostic efficacy of the predictive model with that of sonographers of different seniority. Methods The model-building data set prospectively included 364 patients (a total of 388 nodules) who underwent thyroid surgery and preoperative ultrasound examination in three hospitals (the Second Affiliated Hospital of Fujian Medical University, Zhongshan Hospital Affiliated to Xiamen University, Zhangzhou Affiliated Hospital) from January 2019 to September 2019. The CAD analytic results, clinical information and laboratory indicators were collected. Using pathology as the gold standard, the differences of 21 related factors between benign and malignant thyroid groups was compared. Finally, 11 factors were selected for logistic regression analysis, and 6 related factors with statistical significance for the prediction of benign and malignant nodules were selected for model establishment. The model validation data set included 105 patients (a total of 105 nodules) who underwent fine needle aspiration (FNA) in the three hospitals during the same period. The predictive model and three sonographers of different seniority made their judgments of the thyroid nodules separately. Using the pathology as the gold standard, the receiver operating characteristics curve (ROC) was drawn, the area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) were calculated. The diagnostic efficacy of predictive model and sonographers of different seniority was compared with each other. Result A predictive model was built as follow: Logit(p)=-5.218+2.601×(hypoechogenicity index)+1.981×(echogenic foci index)+3.079×(edge blurring index)+1.267×(aspect ratio>1)+0.614×(TSH)-0.071×(tumor maximum diameter). The AUC of the model was 0.884, the sensitivity was 85.50%, the specificity was 81.97%, the PPV was 91.1%, and the NPV was 72.5%. The AUC, sensitivity of the model were between that of senior sonographer and intermediate sonographer, The specificity of the model were between that of junior sonographer and intermediate sonographer. Conclusion The predictive model can predict the malignance risk of thyroid nodules well, and the overall diagnostic efficacy of the model was lower than the senior sonographer, but higher than the junior and intermediate sonographers.

相似文献/References:

[1]王晓飞,聂生东,王远军,等.基于MRI的脑肿瘤计算机辅助检测技术研究进展[J].中国医学物理学杂志,2014,31(01):4635.[doi:10.3969/j.issn.1005-202X.2014.01.010]
[2]张泽文,张才擎,张成琪.基于高清晰度CT图像的孤立性肺结节计算机辅助诊断系统[J].中国医学物理学杂志,2015,32(05):669.[doi:doi:10.3969/j.issn.1005-202X.2015.05.012]
[3]陆祎,朱景雨,汪登斌,等.双源CT双能非线性融合技术显示甲状腺疾病[J].中国医学物理学杂志,2016,33(10):1047.[doi:10.3969/j.issn.1005-202X.2016.10.014]
 [J].Chinese Journal of Medical Physics,2016,33(1):1047.[doi:10.3969/j.issn.1005-202X.2016.10.014]
[4]任慧雅,高宏博,李月秋,等. 石墨烯热疗对良性甲状腺结节的疗效[J].中国医学物理学杂志,2019,36(4):487.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.023]
 REN Huiya,GAO Hongbo,LI Yueqiu,et al. Therapeutic effects of graphene thermal therapy for benign thyroid nodules[J].Chinese Journal of Medical Physics,2019,36(1):487.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.023]
[5]吴秀明,王霞丽,吕国荣,等.计算机辅助系统在诊断乳腺良恶性肿瘤中的应用[J].中国医学物理学杂志,2020,37(3):374.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.022]
 WU Xiuming,WANG Xiali,LYU Guorong,et al.Application of computer-aided detection in ultrasound diagnosis of benign and malignant breast tumors[J].Chinese Journal of Medical Physics,2020,37(1):374.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.022]
[6]王美文,王艳春,肖沪生,等.S-Detect技术在乳腺超声检查中的诊断性能[J].中国医学物理学杂志,2020,37(4):450.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.010]
 WANG Meiwen,WANG Yanchun,XIAO Husheng,et al.Diagnostic performances of S-Detect technique in breast ultrasound examination[J].Chinese Journal of Medical Physics,2020,37(1):450.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.010]
[7]魏莉,胡煜麟,肖汉,等.99Tcm-MIBI亲肿瘤显像对甲状腺结节的诊断价值[J].中国医学物理学杂志,2020,37(8):1030.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.017]
 WEI Li,HU Yulin,XIAO Han,et al.Diagnostic value of technetium-99m methoxy-isobutyl-isonitrile for thyroid nodules[J].Chinese Journal of Medical Physics,2020,37(1):1030.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.017]
[8]蒋芙蓉,赵静文,刘翔,等.基于病理图像的计算机辅助诊断进展[J].中国医学物理学杂志,2022,39(3):384.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.020]
 JIANG Furong,ZHAO Jingwen,LIU Xiang,et al.Advances in computer-aided diagnosis based on pathological images[J].Chinese Journal of Medical Physics,2022,39(1):384.[doi:DOI:10.3969/j.issn.1005-202X.2022.03.020]
[9]周昱汐,贾守强,聂生东.计算机辅助诊断脑血管病的应用[J].中国医学物理学杂志,2023,40(9):1167.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.018]
 ZHOU Yuxi,JIA Shouqiang,NIE Shengdong.Application of computer-aided diagnosis for cerebrovascular diseases[J].Chinese Journal of Medical Physics,2023,40(1):1167.[doi:DOI:10.3969/j.issn.1005-202X.2023.09.018]
[10]崔楠,陈雨凡,柏通,等.甲状腺结节AI超声辅助诊断系统在住院医师规范化培训教学中的应用[J].中国医学物理学杂志,2023,40(10):1233.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.007]
 CUI Nan,CHEN Yufan,BAI Tong,et al.Application of ACR TI-RADS-based computer-aided diagnosis system for thyroid nodules in the teaching practice of standardized training for resident doctors[J].Chinese Journal of Medical Physics,2023,40(1):1233.[doi:DOI:10.3969/j.issn.1005-202X.2023.10.007]

备注/Memo

备注/Memo:
【收稿日期】2020-07-12 【基金项目】泉州市科技计划项目(2019C076R);教育部泉州医学高等专科学校母婴健康服务应用技术协同创新中心经费资助;福建省临床重点专科建设项目 【作者简介】叶冯颖,在读硕士,医师,研究方向:超声医学新技术,E-mail: 511593360@qq.com 【通信作者】吕国荣,硕士,主任医师,研究方向:超声医学新技术,E-mail: lgr_feus@sina.com
更新日期/Last Update: 2021-01-29