[1]林卓琛,张晋昕.基于非参数相关系数的心肌病自动诊断[J].中国医学物理学杂志,2021,38(1):80-85.[doi:10.3969/j.issn.1005-202X.2021.01.014]
 LIN Zhuochen,ZHANG Jinxin.Automatic diagnosis of cardiomyopathy based on nonparametric correlation coefficient[J].Chinese Journal of Medical Physics,2021,38(1):80-85.[doi:10.3969/j.issn.1005-202X.2021.01.014]
点击复制

基于非参数相关系数的心肌病自动诊断()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
38卷
期数:
2021年第1期
页码:
80-85
栏目:
医学信号处理与医学仪器
出版日期:
2021-01-29

文章信息/Info

Title:
Automatic diagnosis of cardiomyopathy based on nonparametric correlation coefficient
文章编号:
1005-202X(2021)01-0080-06
作者:
林卓琛张晋昕
中山大学公共卫生学院, 广东 广州 510080
Author(s):
LIN Zhuochen ZHANG Jinxin
School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
关键词:
心电图肥厚型心肌病扩张型心肌病Hoeffding D测度PTB数据库
Keywords:
Keywords: electrocardiogram hypertrophic cardiomyopathy dilated cardiomyopathy Hoeffding D measure PTB dataset
分类号:
R318;R542.2
DOI:
10.3969/j.issn.1005-202X.2021.01.014
文献标志码:
A
摘要:
针对肥厚型心肌病和扩张型心肌病患者的心电图导联间的相关性,提出心肌病自动诊断的一种方法。该研究从12导联ECG信号中分割出来的单个心跳片段进行识别,以健康人群为对照识别出DCM和HCM的片段。从片段中提取264个非参数相关系数特征并通过变量筛选得到12个特征,输入到支持向量机中进行建模,采用10折交叉验证评价模型。模型的总准确率为99.88%±0.08%。模型使用的特征少,运行速度快,准确率高,有助于临床心肌病的自动化诊断,节约医疗资源。
Abstract:
Abstract: Based on the correlation between electrocardiogram (ECG) leads of patients with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), a method of automatic diagnosis of cardiomyopathy is proposed. In this study, a single heart beat segment separated from 12-Lead ECG signals is identified, and DCM and HCM segments are identified from healthy people. After calculation, 264 nonparametric correlation coefficient features are extracted from the fragments, and 12 features are obtained through variable selection. Then, these 12 features are inputted to support vector machine for modeling. 10-fold cross-validation is used to evaluate the model. The accuracy of the model is 99.88%±0.08%. With fewer features, higher speed and higher accuracy, the model is helpful to the automatic diagnosis of clinical cardiomyopathy and saves medical resources.

相似文献/References:

[1]武会江,黄启俊,常胜,等.基于多项式参数拟合和支持向量机的心肌梗死识别算法[J].中国医学物理学杂志,2017,34(7):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
 [J].Chinese Journal of Medical Physics,2017,34(1):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
[2]王凯,杨枢. 基于自适应学习的心律失常心拍分类方法[J].中国医学物理学杂志,2019,36(1):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
 WANG Kai,YANG Shu. Adaptive learning-based method for classification of arrhythmic heartbeats[J].Chinese Journal of Medical Physics,2019,36(1):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
[3]梁伟玲,吴超,林建斌,等. 基于Arduino的无线心电信号采集系统设计与实现[J].中国医学物理学杂志,2019,36(6):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
 LIANG Weiling,WU Chao,LIN Jianbin,et al. Design and implementation of wireless ECG signal acquisition system based on Arduino[J].Chinese Journal of Medical Physics,2019,36(1):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
[4]王凯,杨枢,李超. 一种基于ECG的多层共轭对称Hadamard特征变换的房颤异常信号分类方法[J].中国医学物理学杂志,2019,36(9):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
 WANG Kai,YANG Shu,LI Chao. ECG-based multi-level conjugate symmetric Hadamard feature transformation for classification of abnormal signals of atrial fibrillation[J].Chinese Journal of Medical Physics,2019,36(1):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
[5]蔚文婧,王寻,张鹏远,等.一种基于多层感知器的房颤心电图检测方法[J].中国医学物理学杂志,2020,37(3):332.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]
 WEI Wenjing,WANG Xun,ZHANG Pengyuan,et al.Multilayer perceptron-based method for atrial fibrillation ECG detection[J].Chinese Journal of Medical Physics,2020,37(1):332.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]
[6]文翠,赵新军,张震洪,等.冠心病患者心电图ST段改变与多排螺旋CT冠状动脉成像的关系分析[J].中国医学物理学杂志,2020,37(8):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
 WEN Cui,ZHAO Xinjun,ZHANG Zhenhong,et al.Relationships between ECG ST-segment changes and multi-slice spiral CT coronary angiography in patients with coronary heart disease[J].Chinese Journal of Medical Physics,2020,37(1):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
[7]胡丹琴,蔡文杰.QRS复合波检测技术综述[J].中国医学物理学杂志,2020,37(9):1208.[doi:10.3969/j.issn.1005-202X.2020.09.024]
 HU Danqin,CAI Wenjie.Review on technologies for QRS complex detection[J].Chinese Journal of Medical Physics,2020,37(1):1208.[doi:10.3969/j.issn.1005-202X.2020.09.024]
[8]王新峰,漆梦玲,徐洪智.基于心电图的心肌梗死识别分类研究[J].中国医学物理学杂志,2022,39(8):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
 WANG Xinfeng,QI Mengling,et al.ECG-based identification and classification of myocardial infarction[J].Chinese Journal of Medical Physics,2022,39(1):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
[9]徐柏林,蔡文杰,杨明菲,等.基于改进U-Net模型的心电波形分割[J].中国医学物理学杂志,2022,39(10):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]
 XU Bolin,CAI Wenjie,YANG Mingfei,et al.ECG waveform segmentation based on improved U-Net model[J].Chinese Journal of Medical Physics,2022,39(1):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]
[10]刘建华,吕建峰,蔡金丹.基于卷积神经网络和长短时记忆网络的心肌梗死检测[J].中国医学物理学杂志,2022,39(11):1448.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.020]
 LIU Jianhua,L?Jianfeng,CAI Jindan.Screening for myocardial infarction using convolutional neural network and long short-term memory network[J].Chinese Journal of Medical Physics,2022,39(1):1448.[doi:DOI:10.3969/j.issn.1005-202X.2022.11.020]

备注/Memo

备注/Memo:
【收稿日期】2020-07-12 【基金项目】国家自然科学基金(81773545);广东省自然科学基金(2016A030313365) 【作者简介】林卓琛,硕士研究生,主要研究方向:统计学方法及其医学应用,E-mail: linzhch3@mail2.sysu.edu.cn 【通信作者】张晋昕,博士,副教授,主要研究方向:统计学方法及其医学应用,E-mail: zhjinx@mail.sysu.edu.cn
更新日期/Last Update: 2021-01-29