[1]胡丹琴,蔡文杰.QRS复合波检测技术综述[J].中国医学物理学杂志,2020,37(9):1208-1212.[doi:10.3969/j.issn.1005-202X.2020.09.024]
 HU Danqin,CAI Wenjie.Review on technologies for QRS complex detection[J].Chinese Journal of Medical Physics,2020,37(9):1208-1212.[doi:10.3969/j.issn.1005-202X.2020.09.024]
点击复制

QRS复合波检测技术综述()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
37
期数:
2020年第9期
页码:
1208-1212
栏目:
医学人工智能
出版日期:
2020-09-25

文章信息/Info

Title:
Review on technologies for QRS complex detection
文章编号:
1005-202X(2020)09-1208-05
作者:
胡丹琴蔡文杰
上海理工大学医疗器械与食品学院,上海200093
Author(s):
HU Danqin CAI Wenjie
School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
关键词:
心电图QRS复合波深度神经网络综述
Keywords:
electrocardiogram QRS complex deep neural network review
分类号:
R318
DOI:
10.3969/j.issn.1005-202X.2020.09.024
文献标志码:
A
摘要:
心电图是诊断各种心脏疾病的一个重要手段,而准确识别QRS复合波也是多种自动化心电图分析方法的一个前 提。检测QRS复合波的传统方法主要有差分阈值算法、双阈值检测算法、经验模态分解法、小波变换算法等,这些算法的 主要步骤包括对心电信号进行预处理、特征提取和检测等,对心电信号质量要求比较高,且通用性不是很强。相对于传统 方法检测QRS复合波,人工智能的发展特别是深度学习的出现为QRS复合波检测提供一种新的方法,利用深度学习可自 主提取QRS复合波特征信息,从而进行精准定位,相比传统方法,鲁棒性更好,对信号质量不佳的数据检测效果更好。本 研究主要对用于QRS复合波预处理以及检测的技术进行综述,并对检测技术的发展进行展望。
Abstract:
Electrocardiogram (ECG) is an important way to diagnose various heart diseases, and the accurate identification of QRS complex is required for automatic electrocardiogram analysis. The traditional methods for detecting QRS complex mainly include differential threshold method, detection algorithm based on double-threshold, empirical mode decomposition method, wavelet transform algorithm, etc. The main steps of these algorithms contain preprocessing, feature extraction and detection. The traditional methods have a poor generality and a high requirement of ECG signal quality. Compared with traditional methods for detecting QRS complex, the development of artificial intelligence, especially the emergence of deep learning, provides a new method for QRS complex detection. Deep learning can be used to independently extract QRS complex feature information, thereby realizing precise positioning. Compared with traditional methods, deep learning has a better robustness and a better detection effect for the data with poor signal quality. Herein the technologies used in the preprocessing and detection of QRS complex detection are reviewed, and the future developments are discussed.

相似文献/References:

[1]杨杰,张胜,余顺,等.一种基于二次样条母小波函数的心电QRS复合波检测算法[J].中国医学物理学杂志,2013,30(02):4036.[doi:10.3969/j.issn.1005-202X.2013.02.018]
[2]武会江,黄启俊,常胜,等.基于多项式参数拟合和支持向量机的心肌梗死识别算法[J].中国医学物理学杂志,2017,34(7):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
 [J].Chinese Journal of Medical Physics,2017,34(9):736.[doi:10.3969/j.issn.1005-202X.2017.07.017]
[3]王凯,杨枢. 基于自适应学习的心律失常心拍分类方法[J].中国医学物理学杂志,2019,36(1):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
 WANG Kai,YANG Shu. Adaptive learning-based method for classification of arrhythmic heartbeats[J].Chinese Journal of Medical Physics,2019,36(9):92.[doi:DOI:10.3969/j.issn.1005-202X.2019.01.018]
[4]梁伟玲,吴超,林建斌,等. 基于Arduino的无线心电信号采集系统设计与实现[J].中国医学物理学杂志,2019,36(6):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
 LIANG Weiling,WU Chao,LIN Jianbin,et al. Design and implementation of wireless ECG signal acquisition system based on Arduino[J].Chinese Journal of Medical Physics,2019,36(9):715.[doi:DOI:10.3969/j.issn.1005-202X.2019.06.019]
[5]王凯,杨枢,李超. 一种基于ECG的多层共轭对称Hadamard特征变换的房颤异常信号分类方法[J].中国医学物理学杂志,2019,36(9):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
 WANG Kai,YANG Shu,LI Chao. ECG-based multi-level conjugate symmetric Hadamard feature transformation for classification of abnormal signals of atrial fibrillation[J].Chinese Journal of Medical Physics,2019,36(9):1068.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.014]
[6]蔚文婧,王寻,张鹏远,等.一种基于多层感知器的房颤心电图检测方法[J].中国医学物理学杂志,2020,37(3):332.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]
 WEI Wenjing,WANG Xun,ZHANG Pengyuan,et al.Multilayer perceptron-based method for atrial fibrillation ECG detection[J].Chinese Journal of Medical Physics,2020,37(9):332.[doi:DOI:10.3969/j.issn.1005-202X.2020.03.015]
[7]文翠,赵新军,张震洪,等.冠心病患者心电图ST段改变与多排螺旋CT冠状动脉成像的关系分析[J].中国医学物理学杂志,2020,37(8):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
 WEN Cui,ZHAO Xinjun,ZHANG Zhenhong,et al.Relationships between ECG ST-segment changes and multi-slice spiral CT coronary angiography in patients with coronary heart disease[J].Chinese Journal of Medical Physics,2020,37(9):1035.[doi:DOI:10.3969/j.issn.1005-202X.2020.08.018]
[8]林卓琛,张晋昕.基于非参数相关系数的心肌病自动诊断[J].中国医学物理学杂志,2021,38(1):80.[doi:10.3969/j.issn.1005-202X.2021.01.014]
 LIN Zhuochen,ZHANG Jinxin.Automatic diagnosis of cardiomyopathy based on nonparametric correlation coefficient[J].Chinese Journal of Medical Physics,2021,38(9):80.[doi:10.3969/j.issn.1005-202X.2021.01.014]
[9]王新峰,漆梦玲,徐洪智.基于心电图的心肌梗死识别分类研究[J].中国医学物理学杂志,2022,39(8):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
 WANG Xinfeng,QI Mengling,et al.ECG-based identification and classification of myocardial infarction[J].Chinese Journal of Medical Physics,2022,39(9):992.[doi:DOI:10.3969/j.issn.1005-202X.2022.08.013]
[10]徐柏林,蔡文杰,杨明菲,等.基于改进U-Net模型的心电波形分割[J].中国医学物理学杂志,2022,39(10):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]
 XU Bolin,CAI Wenjie,YANG Mingfei,et al.ECG waveform segmentation based on improved U-Net model[J].Chinese Journal of Medical Physics,2022,39(9):1274.[doi:DOI:10.3969/j.issn.1005-202X.2022.10.016]

备注/Memo

备注/Memo:
【收稿日期】2020-03-20 【基金项目】国家自然科学基金(31830042) 【作者简介】胡丹琴,硕士研究生,研究方向:医学人工智能,E-mail: 1132575699@qq.com 【通信作者】蔡文杰,博士,副教授,研究方向:医学人工智能,E-mail: wenjiecai@aliyun.com
更新日期/Last Update: 2020-09-25