[1]张富利,崔德琪,王秋生,等.基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较[J].中国医学物理学杂志,2019,36(12):1486-1490.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
 ZHANG Fuli,CUI Deqi,WANG Qiusheng,et al.Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy[J].Chinese Journal of Medical Physics,2019,36(12):1486-1490.[doi:DOI:10.3969/j.issn.1005-202X.2019.12.024]
点击复制

基于深度学习和图谱库方法自动勾画肿瘤放疗中危及器官的比较()
分享到:

《中国医学物理学杂志》[ISSN:1005-202X/CN:44-1351/R]

卷:
36卷
期数:
2019年第12期
页码:
1486-1490
栏目:
其他(激光医学等)
出版日期:
2019-12-25

文章信息/Info

Title:
Comparative study of deep learning- versus Atlas-based auto-segmentation of organs-at-risk in tumor radiotherapy
文章编号:
1005-202X(2019)12-1486-05
作者:
张富利1崔德琪2王秋生3韦凌宇1朱林林2郁艳军1李海鹏3王雅棣1
1.解放军总医院第七医学中心, 北京 100700; 2.北京连心医疗科技有限公司, 北京 100083; 3.北京航空航天大学自动化科学与电气工程学院, 北京 100083
Author(s):
ZHANG Fuli1 CUI Deqi2 WANG Qiusheng3 WEI Lingyu1 ZHU Linlin2 YU Yanjun1 LI Haipeng3 WANG Yadi1
1. the Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China; 2. Beijing Linkingmed Science and Technology Company, Beijing 100083, China; 3. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China
关键词:
深度学习图谱库危及器官自动勾画肿瘤放射治疗
Keywords:
Keywords: deep learning Atlas organs-at-risk auto-segmentation tumor radiotherapy
分类号:
R318;R811.1
DOI:
DOI:10.3969/j.issn.1005-202X.2019.12.024
文献标志码:
A
摘要:
【摘要】目的:评估比较基于深度学习(DL)和图谱库(Atlas)方法自动勾画不同部位肿瘤放疗中危及器官(OARs)轮廓的几何学精度,为临床应用提供依据。方法:选择40例肿瘤患者的CT图像(头颈部、胸部、腹部和盆腔肿瘤患者各10例),由资深放射治疗医师手动勾画OARs,然后再分别使用基于DL和Atlas方法的自动勾画软件勾画OARs。采用形状相似性指数(DC)、Jaccard系数(JC)、Hausdorff距离(HD)、体积差异(VD)等多个指标评价基于DL和Atlas自动勾画与手动勾画OARs的几何学一致性。结果:除直肠外,采用DL方法勾画的多数OARs的DC指标高于0.7,优于Atlas方法,差异有统计学意义(P<0.05)。此外,DL方法的JC值除晶体、直肠、脊髓外也都大于0.7。HD中最大的是脊髓,两种方法均超过20 mm。DL方法中VD绝对值较大的是直肠。结论:基于DL方法自动勾画的OARs几何精确度总体上高于Atlas方法。下一步,通过继续增大训练集的数据量可进一步提高基于DL方法模型的鲁棒性,从而更好地辅助放射肿瘤医师,使肿瘤患者获益。
Abstract:
Abstract: Objective To evaluate and compare the geometric accuracy between deep learning (DL)- and Altas-based auto-segmentation technologies for contouring organs-at-risk (OARs) in radiotherapy for tumors locating in different sites so as to provide a basis for the clinical application. Methods The OARs in CT images of 40 patients with tumors in different sites (head and neck, thorax, abdomen, and pelvic cavity) were manually segmented by senior physicians, and then automatically segmented by DL- and Atlas-based auto-segmentation methods. Several evaluation indicators such as Dice coefficient (DC), Jaccard coefficient (JC), Hausdorff distance (HD) and volume difference (VD) were used to evaluate the geometric accuracy between DL- or Atlas-based auto-segmentations and manual segmentation. Results The DC values of OARs except for rectum segmented by DL-based method were higher than 0.7, higher than the results obtained by Atlas-based method, with statistical significance (P<0.05). In addition, the JC values obtained by DL-based method were also higher than 0.7, except for the JC values of lens, rectum and spinal cord. Spinal cord had the highest HD value, exceeding 20 mm in both methods. The rectum segmented by DL method had relatively high absolute VD. Conclusion The geometric accuracy of DL-based auto-segmentation is generally superior to that of Atlas-based auto-segmentation. In the further study, the robustness of DL model will be increased by expanding the training dataset, thereby better assisting radiation oncologists in routine clinical work and bringing benefits to tumor patients.

相似文献/References:

[1]陶源,王佳飞,杜俊龙,等.基于卷积神经网络的细胞识别[J].中国医学物理学杂志,2017,34(1):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
 [J].Chinese Journal of Medical Physics,2017,34(12):53.[doi:10.3969/j.issn.1005-202X.2017.01.011]
[2]门阔,戴建荣. 利用深度反卷积神经网络自动勾画放疗危及器官[J].中国医学物理学杂志,2018,35(3):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
 MEN Kuo,DAI Jianrong. Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J].Chinese Journal of Medical Physics,2018,35(12):256.[doi:DOI:10.3969/j.issn.1005-202X.2018.03.002]
[3]邓金城,彭应林,刘常春,等. 深度卷积神经网络在放射治疗计划图像分割中的应用[J].中国医学物理学杂志,2018,35(6):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
 DENG Jincheng,PENG Yinglin,LIU Changchun,et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics,2018,35(12):621.[doi:DOI:10.3969/j.issn.1005-202X.2018.06.001]
[4]查雪帆,杨丰,吴俣南,等. 结合迁移学习与深度卷积网络的心电分类研究[J].中国医学物理学杂志,2018,35(11):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
 ZHA Xuefan,YANG Feng,WU Yunan,et al. ECG classification based on transfer learning and deep convolution neural network[J].Chinese Journal of Medical Physics,2018,35(12):1307.[doi:DOI:10.3969/j.issn.1005-202X.2018.11.013]
[5]宫进昌,赵尚义,王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
 GONG Jinchang,ZHAO Shangyi,WANG Yuanjun.Research progress on deep learning-based medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(12):420.[doi:DOI:10.3969/j.issn.1005-202X.2019.04.010]
[6]安莹,黄能军,杨荣,等. 基于深度学习的心血管疾病风险预测模型[J].中国医学物理学杂志,2019,36(9):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
 AN Ying,HUANG Nengjun,YANG Rong,et al. Deep learning-based model for risk prediction of cardiovascular diseases[J].Chinese Journal of Medical Physics,2019,36(12):1103.[doi:DOI:10.3969/j.issn.1005-202X.2019.09.021]
[7]徐航,随力,张靖雯,等.卷积神经网络在医学图像分割中的研究进展[J].中国医学物理学杂志,2019,36(11):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
 XU Hang,SUI Li,ZHANG Jingwen,et al.Progress on convolutional neural network in medical image segmentation[J].Chinese Journal of Medical Physics,2019,36(12):1302.[doi:DOI:10.3969/j.issn.1005-202X.2019.11.011]
[8]温佳圆,林国钰,张逸文,等.应用深度学习网络实现肾小球滤过膜超微病理图像的语义分割[J].中国医学物理学杂志,2020,37(2):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
 WEN Jiayuan,LIN Guoyu,ZHANG Yiwen,et al.Semantic segmentation of ultrastructural pathological images of glomerular filtration membrane using deep learning network[J].Chinese Journal of Medical Physics,2020,37(12):195.[doi:DOI:10.3969/j.issn.1005-202X.2020.02.012]
[9]秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020,37(4):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
 QIN Nannan,XUE Xudong,WU Ailin,et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J].Chinese Journal of Medical Physics,2020,37(12):524.[doi:DOI:10.3969/j.issn.1005-202X.2020.04.023]
[10]薛湛琦,王远军.基于深度学习的多模态医学图像融合方法研究进展[J].中国医学物理学杂志,2020,37(5):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]
 XUE Zhanqi,WANG Yuanjun.Advances in multimodal medical image fusion method based on deep learning[J].Chinese Journal of Medical Physics,2020,37(12):579.[doi:10.3969/j.issn.1005-202X.2020.05.009]

备注/Memo

备注/Memo:
【收稿日期】2019-10-02 【基金项目】首都临床特色应用研究专项课题(Z181100001718011) 【作者简介】张富利,副主任技师/副教授,主要从事多模态影像引导精确放疗、辐射防护与保健物理等临床科研工作,E-mail: radiozfli@163.com 【通信作者】王雅棣,主任医师,主要从事肿瘤精确放疗和综合治疗等临床科研工作,E-mail: wangyadi@hotmail.com
更新日期/Last Update: 2019-12-26